
Digital Systems Design Coursework - Report 1
Group 3

1st Kwok Tsz Wing
01708991

twk119@ic.ac.uk

2nd Josiah Mendes
01760165

jam419@ic.ac.uk

I. INTRODUCTION

The following report discusses the first two tasks assigned in
the coursework specification for Digital Systems Design. The
following investigation was carried out using Intel Quartus
Lite 21.0, on a Terasic DE-1 SoC board with a Cyclone V
FPGA.

II. TASK 1 - NIOS II SETUP

This task involves using the Platform Designer tool to create
a system with a Nios II CPU, On-Chip Memory, a JTAG
UART, an Interval Timer, a System ID Peripheral and Parallel
I/O, using provided blocks within Quartus; and then using the
Nios II Software Build Tools to run a simple ”Hello World”
C program on the system.

Fig. 1. System Components and Connections within the Platform Designer

A. System Design using Platform Designer

The complete setup is shown in Figure 1. Components
that have hidden settings not shown in the figure are further
detailed here:

1) Nios II: According to the instructions, a Nios II/f core
was chosen as the instantiated soft core, with no hardware im-
plementation of multiplication and division. A 2Kb instruction
cache was added to the design, and tightly coupled memory
was not used.

2) On-Chip Memory: The On-Chip Memory was specified
as instructed - a writable 20 kilobyte sized RAM.

B. Instantiating the System on FPGA

By using the generated block description file, the system
was added to the FPGA board and connected to the corre-
sponding inputs and outputs for the clock, reset and LEDs.
A screenshot of the complete block description is shown in
Figure 2.

Fig. 2. Block Level Description of System

The unconnected IO in the bottom left of Figure 2 will be
used in a later task.

C. Quartus Compilation Analysis

The design was successfully compiled and the reports
for resource usage and timing analysis were obtained. It is
expected that this will be one of the smallest designs as it
contains the bare minimum, and thus future designs will not be
better when compared on resource usage and timing analysis.

1) Resource Usage: The following table shows the resource
usage obtained from the compilation of the current design.

Logic utilization (in ALMs) 1355 / 32070 (4%)
Total registers 2151
Total pins 47/457 (10%)
Total virtual pins 0
Total block memory bits 210048 / 4065280 (5%)
Total RAM Blocks 45 / 397 (11%)
Total DSP Blocks 0 / 87 (0%)
Total PLLs 0 / 6 (0%)
Total DLLs 0 / 4 (0%)

When broken down by entity, it is observed that most of the
logic utilisation is by the Nios II processor, and the on-chip
memory is the main consumer of block memory bits. As no



dedicated multiplication hardware is included, it is no surprise
that the DSP utilisation sits at 0%.

2) Timing Analysis: The results from the timing analysis
are included below:

Setup Hold Recovery Removal Minimum
pulse width

Worst-case
Slack 10.458 0.017 14.518 0.339 8.441

altera reserved
tck 23.300 0.017 48.418 0.339 48.746

sopc clk 10.458 0.132 14.518 0.425 8.441

The timing analysis shows that at all simulated tempera-
tures, there are no issues with meeting the necessary timing
constraints at the current clock speed - 50MHz, and also means
that there may be a bit of room for extra performance by
increasing the clock speed.

No optimisations through Quartus or manual optimisations
were carried out on the fitting of logic and timing, so these
are baseline numbers that could possibly be improved slightly
to increase performance and reduce resource usage.

III. TASK 2 - COMPUTING A SIMPLE FUNCTION

The task at hand here is to use the Nios II processor
initialised in the previous task to compute Equation 1 for three
different inputs shown in Table I.

y =

N∑
i=1

xi + x2
i (1)

A. Function

To compute Equation 1, function sumVector() is written
as shown in Listing 1. The function takes in vector x with
length M and returns y as a float. It is assumed that the
elements are single-precision and are in the range between 0
and 255.

1 float sumVector(float x[], int M){
2 int i;
3 float rtn = 0;
4 for (i=0; i<N; i++) {
5 rtn += x[i] + x[i]*x[i];
6 }
7 return rtn;
8 }

Listing 1: sumVector

B. Memory

It was observed that the system runs out of memory and
is not able to evaluate Case 3 in Table I. Running using
debug tools shows that the array generation function runs
up to a certain number and then stops and this number also
approximately equal to the memory allocated for stack/heap
divided by 4 bytes (size of float). The vector in case 3
requires approximately 1Mb of memory which exceeds the
maximum available on chip memory size (256kB) on this

particular FPGA board. Hence, case 3 can only be evaluated
with external memory which will be further discussed in the
next report.

TABLE I
VECTOR SIZE IN EACH CASE

Number of Elements Size (Bytes)
Case 1 [0:5:255] 52 208
Case 2 [0:1/8:255] 2041 20164
Case 3 [0:1/1024:255] 261121 1044484

Program size of the elf file is around 12kB, obtained
during compilation, and is consistent across all test cases.
Although each case has different vector size, it is declared
during run-time and stored in the stack. The total memory
required by the application would be approximately the sum
of the program size and vector size as stated in Table I.

As the total memory for Case 2 would be around 32kB, the
size of the on-chip memory is specified to be 34kB to reduce
resource usage.

C. Correctness

As in Nios II, the printf() function does not support
floating point, the result obtained on the console is scaled
down. A separate Python script is written to recover the value
calculated. However, during the scale down process, there
would be data loss leading to inaccuracy. Hence the C program
was also compiled and run on a desktop computer to test the
program for functional correctness and ensure that the Nios II
is carrying out the correct instructions.

In addition, a Python script is also written to compare the
result. Results are recorded in table II.

TABLE II
RESULTS OBTAINED BY DIFFERENT METHODS

Nios II C Python
Case 1 1143808 1144780 1144780
Case 2 44509184 44509760 44509745.3125
Case 3 N/A 5693058048 5693101440.041504

The float type in C is defined as single-precision (4 bytes)
while they are double-precision (8 bytes) in Python. This is
further confirmed as the C script provides the same results with
Python when all floats are replaced by doubles. The impact
of precision in floating points becomes more obvious as there
are more data with more significant figures, which is shown
progressively in the 3 cases.

However further increasing floating point precisions (e.g.
128 bits) would not improve accuracy. As elements are single-
precision with 7 significant decimal digits and the highest
order in the function is 2, a double-precision floating point
with 15 significant decimal digits would be more than enough
to store the precise value.

D. Measuring Performance

In order to determine the performance of our system, we
timed runs of the sumVector function to use as a benchmark.



The specification suggested using the system clock ticks to
measure performance, but as the timestamp driver is more
accurate with a higher time frequency (in sync with clock
rate), it was chosen. It uses the same hardware components as
the system clock driver, and an example of how it was used
is shown in Listing 2.

1 #include <sys/alt_timestamp.h>
2 #include <alt_types.h>
3 ...
4 int main(){
5 ...
6 if (alt_timestamp_start() < 0){
7 printf("No timer available");
8 }
9 alt_u32 time0 = alt_timestamp();

10 sumVector(x,N);
11 alt_u32 time1 = alt_timestamp();
12 ...
13 }

Listing 2: Timestamp Timing

The alt_timestamp() calls return unsigned 32 bit
integers, corresponding to the number of ticks that have passed
since alt_timestamp_start() is called. This can be
converted to time by using the known timestamp frequency
(50 MHz).

The benchmark used 10 runs in repeat within the same
program without re-downloading the ELF, and the time for
each run was noted. Based on the individual times, the average
time and standard deviation is also obtained.

TABLE III
BASELINE PERFORMANCE

Average Tick Average Time Standard Deviation
(us) (us)

Case 1 38710.3 774.206 0.1204
Case 2 1548065.2 30961.304 0.1165

E. Effect of Cache Size on Performance

The initial Nios II was setup with a 2KB instruction cache
and a 2KB data cache. As the on-chip memory is not directly
connected to the CPU and communicates through the Avalon
Master-Slave protocol, there is a certain latency attached to it
despite it being implemented on ”fast” memory. Therefore,
the size of the instruction cache and the size of the data
cache could have significant impacts on the performance of
the program. It was hypothesised that an instruction cache
that could fit the whole program into memory would be able
to bring about one of the largest speedups.

For results shown in table IV, cache size refers to the
total size of both the instruction cache and data cache1 and

1When unspecified, the size of each cache is equal

resources is the total logic utilisation in percentage2. Each
benchmark run includes one untimed function call to warm
up the cache and provide accurate results. No software opti-
misations were applied both within code or through compiler
options, only the cache size was altered. The data from Table
IV is also shown in Figure 3

TABLE IV
BENCHMARK PERFORMANCES WITH DIFFERENT CACHE SIZE

Cache Size (kB) Resources Case 1 (us) Case 2 (us) Avg.% Change
0 (0I + 0D) 4.3009% 2681.052 107341.1440 -267.40%
2 (1I + 1D) 4.6297% 931.186 36839.834 -100.00%
4 (2I + 2D) 4.7713% 774.206 30961.304 0.00%
8 (4I + 4D) 5.0485% 653.738 25776.214 11.10%
16 (8I + 8D) 6.734% 653.102 25666.828 11.33%
48 (16I+32D) 7.8433% 653.086 25660.692 11.34%

128 (64I + 64D) 13.4809% 653.02 25660.37 11.35%

It was observed that performance increases significantly
with cache size for small values, showing the impact of latency
when having to fetch each instruction and data from on-chip
memory, but plateauing when the cache size reaches 4kB. An
increase in cache size allows more instructions and data to
be stored, reducing cache miss rate and reducing the average
memory access time. However, reaching 4kB, the cache is
large enough to taker in sufficient data to avoid stalls due
to memory access. It is suspected that the bottleneck sits
in other factors such as the current software implementation
of multiplication and will be further discussed in following
reports.

0 4 8 12 16
0

0.25

0.5

0.75

1

·105

Resource Utilisation [%]

E
xe

cu
tio

n
Ti

m
e

fo
r

C
as

e
2

[u
s]

Case 2

Fig. 3. Effect of Cache Size on Performance and Resources

Hence, future designs for this probelm would have an
instruction cache of 4kB and a data cache of 2kB.

2The Resource Percentage is obtained using the formula given in the
specification: 1

3
(Multipliers Used

Total Multipliers + Memory Bits Used
Total Memory Bits + Logic Elements Used

Total Logic Elements )



F. Use of Compiler Flags to Increase Performance

With the baseline cache configuration (2KB I-cache + 2KB
D-cache), a couple different compiler flags were also tested
and their effects measured.

1) Size: The -Os compiler flag allows the compiler to
optimise for program size, generating both a smaller ELF
file and reducing execution time as shown in table V. This
is probably an optimisation that should be used to reduce the
size taken up by the program in memory.

2) O3: Using the -O3 compiler flag enables a significant
uptick in performance, reducing execution time for both cases,
coming close to providing a similar performance benefit to the
increased cache size without the increased resource utilisation.

TABLE V
PERFORMANCE OF DIFFERENT OPTIMISATION LEVELS

Compiler Flag Program Size Case 1 Time Case 2 Time
(kB) (us) (us)

Nil 12 774.206 30961.304
-Os 10 729.236 28610.012
-O3 10 700.386 27498.434

However, this better performance comes in an expense of
compilation and possibly the ability to debug the problem.
Hence changing the compiler flag should only be done at the
final stage of design where most bugs are found and fixed.
Using O3 could be an option to increase performance without
needing extra resources to get to that point.

IV. CONCLUSION

This paper presented a series of barebones designs to
compute a simple function that operated on a vector of floats.
This implementation works well for small and medium cases,
but does not function for large cases as it runs out of memory
due to the limited amount of on-chip memory. The cache size
was also tested and optimised for this function, to the point
where increases in cache size only led to increase resource
usage without corresponding increases in performance.

0 4 8 12 16
0

1.5

3

4.5

6
·104

Resource Utilisation [%]

A
ve

ra
ge

E
xe

cu
tio

n
Ti

m
e

fo
r

C
as

e
1

&
2

[u
s]

Task 2 Designs

Fig. 4. Performance vs Resources for Generated Designs in Task 2

This suggests that the design’s bottleneck when computing
this function is now at computation rather than memory. There-
fore, to reduce execution time and increase performance, the
next steps should be moving computation from software into
hardware, which may lead to a resource usage increase, but
should bring about a relatively greater performance increase.

The use of compiler flags to gain a performance improve-
ment in software with no resource cost was also explored, and
may be useful in future designs.


