
Digital Systems Design Coursework - Report 2
Group 3

1st Kwok Tsz Wing
01708991

twk119@ic.ac.uk

2nd Josiah Mendes
01760165

jam419@ic.ac.uk

I. INTRODUCTION

The following report discusses Task 3 to Task 5 assigned in
the coursework specification for Digital Systems Design. The
following investigation was carried out using Intel Quartus
Lite 20.1, on a Terasic DE-1 SoC board with a Cyclone V
FPGA.

II. TASK 3 - USING SDRAM

As mentioned in the previous report, only using on-chip
memory composed of FPGA logic elements results in a
small amount of usable memory. It is insufficient to compute
the simple mathematical function y =

∑N
i=1 xi + x2

i with
N = 26121. This particular case would require around 1MB
of memory, and therefore this task introduces the use of off-
chip memory and SDRAM.

Fig. 1. System Components and Connections within the Platform Designer

The DE1 SoC Board comes with a 64Mb SDRAM chip. In
order to utilise it, a SDRAM controller is necessary to control
transactions between the processor and the SDRAM, this is
due to the large amount of protocols to be followed in order
to address each memory location on off-chip memory. Intel
provides a SDRAM Controller Core with an Avalon Memory-
Mapped interface within the Platform Designer in Quartus up
to v20.1, and so this was chosen and added to the system
(shown in Figure 1). This SDRAM Controller acts as an

interface between the main system on FPGA fabric and the
off-chip SDRAM.

As the SDRAM is not located on the FPGA chip itself,
there is a signal propagation delay that is also influenced by
the timing characteristics of the SDRAM chip. These delays
both for access time and output hold times affects the timing
characteristics for the overall system. Therefore, the SDRAM
clock is phase shifted with respect to the system clock so that
it leads the system clock, ensuring that the output signals of
the SDRAM arrive in time to meet timing constraints. This
phase difference is generated using a PLL block from Intel’s
IP library.

Fig. 2. Block Level Description of System on FPGA Fabric

The PLL block has two outputs (outclk0 and outclk1),
where the first output has no phase difference and is con-
nected to the main system (first_nios2_system) and
outclk1, with a –46 degrees phase shift, is connected to the
SDRAM clock input.

A. Function Performance
With the inclusion of SDRAM, the available memory space

has increased to 8 megabytes and it is now possible to use the
Nios II processor initialised in the previous task to compute
Equation 1 for all three different cases shown in Table I.

y =

N∑
i=1

xi + x2
i (1)

As there are no longer memory constraints, a reduced
size C library is no longer used. The program size of the

TABLE I
VECTOR SIZE IN EACH CASE

Number of Elements Size (Bytes)
Case 1 [0:5:255] 52 208
Case 2 [0:1/8:255] 2041 20164
Case 3 [0:1/1024:255] 261121 1044484

elf files is increased to around 75kB from 12kB, obtained
during compilation. This also opens up possibilities to import
large libraries such as math.h and also utilising the full
printf function. Although each case has different vector
sizes, the program size is consistent across all test cases as the
vectors are declared during run-time and stored in the stack
as observed in the previous report.

The performance for each case where the system has
a 4kB instruction cache, 2kB data cache and no compiler
optimisations is shown in Table II. The timestamp function
was used to collect timing over 10 runs, with a resolution of
50MHz.

TABLE II
FUNCTION 1 PERFORMANCE FOR EACH CASE

Average Tick Average Time (us) Standard Deviation (us)
Case 1 32686.8 653.736 0.669
Case 2 1308830.8 26176.616 1.504
Case 3 194212239 3884244.78 22.192

It was observed that the execution time increases compared
to previous tasks. It is suspected that with the introduction of
off-chip memory, the average memory access time increases.
SDRAM has a much higher CAS latency, 3 clock cycles
compared to 1 clock cycle for on-chip memories. Caching
can be used to hide memory access latency by “preloading”
the data. However, with Nios II not supporting out-of-order
execution, the processor has to stall when there is a cache
miss, leading to an increase in run-time. This becomes more
apparent for case 3 where majority of the elements are stored
off-chip.

B. Cache Size

With a larger problem size and changes to memory access,
it was thought necessary to re-evaluate the cache size choices.
A larger cache size would lead to a higher cache hit rate,
it would improve average memory access time and in turn
performance.

Average time in Figure 3 refers to the average time across
the three test cases. It was observed that performance increases
significantly when the instruction cache size increases from
0kB to 2kB, but plateaus after that. Further increases in
performance are obtained by increasing the data cache size, but
this also has limited effect, with limited gains once reaching
2kB in size.

The function of our interest does not have a lot of branch
and jump instructions, but traverses the data elements in the
one-dimensional array. Having no cache would require the
system to keep fetching from external memory which has

0 2 4 8 16 32

2,000

4,000

8,000

16,000

Instruction Cache Size [kB]

E
xe

cu
tio

n
Ti

m
e

A
ve

ra
ge

fo
r

C
as

e
1-

3
[m

s]

0kB D-Cache
1kB D-Cache
2kB D-Cache
4kB D-Cache

16kB D-Cache

Fig. 3. Effect of Cache Size on Performance

high access time due to data being stored off-chip. Once
the instruction cache is large enough to fit the instructions
for each loop, further increases have little to no effect. It is
also observed that the performance is not strongly affected
by the data cache size. As only one float from memory is
necessary in each loop iteration, a small data cache is more
than capable of pre-fetching and fitting multiple elements to
exploit spatial locality. The aggressiveness of the pre-fetching
is also fixed and cannot be customised, so larger data cache
sizes do not show a corresponding reduction in latency.

It is suspected that the bottleneck does not sit in instruction
nor data fetch but in other factors such as current software
implementation and this will be further discussed in the next
section.

To minimize resources usage, the optimal cache size of the
system remains as 2kB data cache + 4kB instruction cache
with a resource score of 4.6064%1. The full resource utilisation
is shown in Table III and the performance of all 3 cases for
this system is recorded in Table II.

TABLE III
TASK 3 OPTIMAL SYSTEM FPGAa RESOURCE UTILISATION

Logic utilization (in ALMs) 1710 / 32070 (5%)
Total registers 2732
Total pins 47/457 (10%)
Total virtual pins 0
Total block memory bits 345024 / 4065280 (5%)
Total RAM Blocks 52 / 397 (11%)
Total DSP Blocks 0 / 87 (0%)
Total PLLs 1 / 6 (0%)
Total DLLs 0 / 4 (0%)

a The resource utilisation does not include the SDRAM chip as this is
part of the board and cannot be removed.

1The Resource Percentage is obtained using the formula given in the
specification: 1

3
(Multipliers Used

Total Multipliers + Memory Bits Used
Total Memory Bits + Logic Elements Used

Total Logic Elements)

III. TASK 4 - A MORE COMPLICATED FUNCTION

This task introduces the function (Equation 2) that is to be
accelerated, and also provides a baseline performance insight
into how fast the function can perform under software with
invariant hardware across the three cases described in Table I.

f(x) =

N∑
i=1

0.5xi + x2
i × cos(

x− 128

128
) (2)

Initially, a straightforward implementation using the
<math.h> library implementation of cos was used and this
is shown in Listing 1.

1 float math_expr(float x[], int M){
2 int i;
3 float rtn = 0;
4 for (i=0; i<M; i++){
5 rtn += 0.5*x[i] + pow(x[i],2)
6 *cos((x[i]-128)/128);
7 }
8 return rtn;
9 }

Listing 1: Unoptimised Implementation

A. Baseline System

The function is run on the default system as described in the
previous section with a 4kB instruction cache and a 2kB data
cache. Table III shows the resource usage obtained from the
compilation of this design with a resource score of 4.6064%.

The performance of the 3 cases with the above code and
system are recorded in table IV. The program size is 91kB
and was consistent among all 3 cases.

TABLE IV
FUNCTION 2 PERFORMANCE FOR EACH CASE

Average Time (us) Standard Deviation (us)
Case 1 27151.30 0.938
Case 2 1079754.32 0.453
Case 3 159718000.00 0.011

With careful look in the generated assembly code, it was
observed that floating points are expanded to double-precision
before arithmetic operations. Hence types are explicitly de-
clared to force the expression be evaluated in single precision
as shown in Listing 2.

The result obtained from this function will be the baseline
system of this project, and accuracy of any future design
should not be lower than Table V. A Python script that
calculates in double-precision is written to compare the results.

B. C Optimisations

As suggested in previous section, the bottleneck of the
system sits in the software implementation of the function.
Optimisations will accumulate in the section, hence all com-
parisons would be relative to the previous sub section.

1 float math_expr(float x[], int M) {
2 int i;
3 float rtn = 0;
4 for (i=0; i<M; i++){
5 float tmp = x[i];
6 float tmp_val = tmp-128.0f;
7 float tmp_pow = pow(tmp,2);
8 tmp_val /= 128.0f;
9 rtn += 0.5f*tmp;

10 float tmp_cos = cos(tmp_val);
11 rtn += tmp_pow * tmp_cos;
12 }
13 return rtn;
14 }

Listing 2: Single Precision Implementation

TABLE V
FUNCTION 2 ACCURACY FOR EACH CASE

Result Error
Case 1 920413.50 1.3760e-7
Case 2 36123052.00 9.2882e-7
Case 3 4616063488.00 1.1740e-3

1) Power and Multiplication: It was suggested that it is
more efficient to multiply the variable by itself rather than
calling the pow function, especially since the equation of our
interest has order of 2 only. This would mean substituting all
occurrences of pow(x[i], 2) with x[i] * x[i]. As the
current system does not have hardware multipliers, software
routines are used to multiply both integer and floating point
numbers. It is observed that float_mult function has less
instructions, especially branch instructions, compared to pow
function. This can be taken advantage of and hence leading to
a better performance.

The hypothesis is further confirmed with an improvement in
performance when executing the function, as shown in Table
VI.

TABLE VI
PERFORMANCE WITH MULTIPLICATION OPTIMISATION

Average Time (us) Uplift
Case 1 26684.84 +1.71%
Case 2 1056951.21 +2.11%
Case 3 153946000.00 +3.61%

2) Use of Loop Constant: In the function, the length of
array is passed in as a parameter. However, length is defined
in a macro and is known at compile time, hence the variable
can be replaced with the macro-defined constant. This could
improve performance by having one less parameter passing
into the function, reducing function call overhead.

In addition, the use of a constant for the loop encourages
loop unrolling, which is a common software optimisation to
improve performance. Loop unrolling decreases the average
loop overhead per iteration by allowing more than one loop

body to be executed before checking the conditions.
-funroll-loops compiler flag was used together with

pragmas to ensure loop unrolling was performed, but the
improvement was not significant as recorded in table VII
despite the increase in program file size by 5kB.

TABLE VII
PERFORMANCE WITH CONSTANT ARRAY LENGTH

Average Time (us) Uplift
Case 1 26518.71 +0.62%
Case 2 1048755.72 +0.77%
Case 3 152614000.00 +0.87%

It is suspected that the bottleneck of the performance sits
in the loop body, and execution time in the body is much
larger than the loop overhead. Hence the impact of reducing
overhead is not significant. However, it is anticipated that in
future design when the loop body takes less instructions, the
importance of loop unrolling can come into play.

C. Cosine Optimisations

As the cos function in the expression takes the largest
proportion of the loop body in the generated assembly code,
it was thought that it would be the main bottleneck in
performance improvements. Hence different implementation
of the cos function are explored. Performances recorded in
this section are obtained with the two software optimisations
and compared with the performance as stated in the previous
section.

1) Use of cosf: math.h library in C provides both cos
and cosf function where cos returns a double and cosf returns
a float. As the accumulator (rtn) in the function is a float,
using cosf would not decrease accuracy. With the function
taking in and returning a float, it does not require additional
float to double extension and double to float truncation. Each
conversion takes 68 instructions, hence changing from cos
function to cosf function improves the performance as shown
in Table VIII.

TABLE VIII
PERFORMANCE AND ACCURACY OF cosf

Average Time (us) Uplift Result Error
Case 1 10345.722 +60.99% 920413.5 1.3760e-7
Case 2 409943.04 +60.91% 36123108 6.2143e-7
Case 3 56899010.71 +62.72% 4621532160 9.3351e-6

The cos function keeps in useful when a higher accuracy
would like to be achieved. By having the accumulator (rtn)
to be a double, and only type cast it before returning from
the function as shown in Listing 3 would improve accuracy
significantly as shown in Table IX.

TABLE IX
ACCURACY FOR EACH CASE WITH DOUBLE IMPLEMENTATION

Result Error
Case 1 920413.625 1.792e-9
Case 2 36123084.00 4.29636e-8
Case 3 4621489152.00 2.90196e-8

1 float math_expr(float x[], int M)
2 {
3 int i;
4 double rtn = 0;
5 for (i=0; i<M; i++){
6 rtn += 0.5*x[i] + pow(x[i],2)*
7 cos(((x[i]-128)/128));
8 }
9 return (float) rtn;

10 }

Listing 3: Double Precision Implementation

Although accuracy is not of main concern in current stage,
in future development if accuracy needs to be improved, such
optimisation can be implemented with a performance cost.

2) Taylor Series: Without any floating point arithmetic
hardware in the system, the cosine function in the math.h
C library is suspected to be implemented by a 6-term Taylor
series which is described as equation 3 with n = 6, as observed
through the generated assembly.

cos(x) =

n∑
k=0

(−1)k

(2k)!
x2k (3)

Instead of calling the library function, the cosine value
can be calculated by explicitly implementing a Taylor series
approximation of the cos function as shown in Listing 4. This
would reduce function call overhead and also allow us to
perform our own optimisations on the implementation.

1 int factorial(int x) {
2 float rtn = 1;
3 for (int i=1; i<x+1; i++){
4 rtn *= i;
5 }
6 return rtn;
7 }
8 float cos_taylor_6terms(float x) {
9 float rtn = 0;

10 for (int i=0; i<7; i++){
11 rtn += pow(-1,i)*pow(x,2*i) /
12 factorial(2*i);
13 }
14 return rtn;
15 }

Listing 4: Naive Implementation of Taylor Series

It was observed that with known n, the terms pow(-1,i)
and factorial(2*i) are known at compile time. This can
be simplified and expanded to compile-time constants instead
of variables calculated in run-time as shown in Listing 5. This
significantly reduces amount of computation needed and the
number of branch instructions, hence improving performance
significantly.

1 float cos_taylor_6terms(float x) {
2 return 1 - ((x*x)/(2)) +
3 ((x*x*x*x)/(24)) -
4 ((x*x*x*x*x*x)/(720)) +
5 ((x*x*x*x*x*x*x*x)/(40320)) -
6 ((x*x*x*x*x*x*x*x*x*x)/(3628800)) +
7 ((x*x*x*x*x*x*x*x*x*x*x*x)/
8 (479001600));
9 }

Listing 5: Implementation of Taylor Series with Constants

The accuracy and performance of Taylor series approx-
imation with 4 terms is also evaluated as it requires less
computation and would be able to provide the result with lower
latency. Although the accuracy performance of 4-term Taylor
series is considerably poorer as magnitude of x increases, the
error is small for |x| < 3 as depicted in Figure 4. For a 6-
term approximation, the range where error is small increases
to |x| < 4.5, while providing a slightly better approximation
around |x| < 1. The performance and results for all three
cases with both alternative cos implementations are recorded
in Table X.

−6 −4 −2 0 2 4 6

−1

0

1

2

3

cos Function
4-Term Taylor
6-Term Taylor

Fig. 4. Approximation of Cos Function using Taylor Series with 4 & 6 terms

TABLE X
PERFORMANCE AND ACCURACY OF TAYLOR SERIES COSINE

APPROXIMATION

Average Time (us) Uplift Result Error
Case 1 17494.90 34.03% 920413.5 1.3760e-7
Case 2 700552.12 33.20% 36123108 6.2143e-7
Case 3 96107000.00 37.03% 4621532160 9.3351e-6

(a). 4 Term Taylor Series

Average Time (us) Uplift Result Error
Case 1 29268.332 -10.37% 920413.5 1.3760e-7
Case 2 1265346.36 -20.65% 36123104 5.1070e-7
Case 3 172628000 -13.11% 4621531136 9.1135e-6

(b). 6 Term Taylor Series

In the mathematical expression of our interest, the parameter
passing into cos function is limited to [-1,1]. Hence, evaluating
the cosine term with a Taylor series of 4 terms could produce
a comparably accurate result, fulfilling the baseline accuracy
stated in Section III-A with a massive improvement in perfor-
mance. The heavy use of multiplication could also be exploited
in the next section by the addition of integer multipliers.

It was observed that all term in the series has an order of
a multiple of 2. Hence to further improve performance, x2 is
calculated and stored separately to reduce repeated multipli-
cation as shown in listing 6. This gives an improvement of
47.7% for case 3.

1 float cos_taylor_4terms(float x)
2 {
3 float xx = x*x;
4 return 1 - ((xx)/(2)) +
5 ((xx*xx)/(24)) -
6 ((xx*xx*xx)/(720)) +
7 ((xx*xx*xx*xx)/(40320));
8 }

Listing 6: Implementation of Taylor Series with Precalculated
x2

In C, floating-point constants have double-precision un-
less suffixed, causing extra instructions during floating-point
arithmetic. In previous section, it was discussed that such
optimisation would lead to a decrease in accuracy. However,
by trial and error, it was observed that after replacing math.h
cos function with 4-term Taylor series, the impact of single-
precision on accuracy is insignificant. Hence the suffix f
is added to each constant, forcing the compiler to treat the
constants as floats and use single precision arithmetic.

This gives a remarkable improvement as shown in table XI.

TABLE XI
PERFORMANCE OF 4-TERM TAYLOR SERIES + TYPED CONSTANTS

Average Time (us) Uplift Result Error
Case 1 8696.1 67.21% 920413.5 1.3760e-7
Case 2 353670.6911 66.23% 36123108 6.2143e-7
Case 3 48173894.68 68.43% 4621532160 9.3351e-6

3) Lookup Table: Besides Taylor series, another approach
to obtain the value of cosine function would be a lookup table.
Values are pre-calculated and stored in an array table with a
predefined precision. Instead of calculating the values during
run-time, they are obtained from the lookup table. A Python
script is written to generate a header file containing the lookup
table array, and the cosine function uses the known index to
obtain the correct index in the table during run-time as shown
in listing 7.

Table XII shows the performance and error with different
precisions of the lookup table approach.

1 float cos_lut(float x) {
2 // POWER is 1/precision
3 int idx = (x+1) * POWER;
4 return COS_LUT[idx];
5 }

Listing 7: Implementation of Lookup Table

TABLE XII
PERFORMANCE AND ACCURACY OF LOOKUP TABLE IMPLEMENTATION

Average Time (us)
Precision File Size Case 1 Case 2 Case 3
1e-04 156kB 6798.52 278329.44 3493622.90
1e-.5 859kB 6707.61 268444.987 34001558.73
1.25e-06 7891kB 6894.02 271429.469 34142747.14
1e-06 7891kB 6706.43 268179.1067 -

(a). Performance

Precision Case 1 Case 2 Case 3
1e-04 2.593769e-05 2.686503e-05 0.9099417
1e-.5 1.303582e-05 1.269127e-05 1.16024118e-03
1.25e-06 1.42474e-06 7.32163947e-07 1.17231694e-03
1e-06 6.61121873e-08 2.64428659e-07 -

(b). Accuracy

It is observed that only until the precision is increased
to 1e-06 that the accuracy meets the baseline. Although this
optimisation gives a massive improvement in performance, it
comes in the cost of a large file size, 100 times larger than the
baseline system. Additionally, it is not possible to evaluate
case 3 due to the lack of available memory on the system
caused by the large program file. Hence it was decided that
this is not an ideal optimisation to be implemented in future
design.

D. Final Optimised Implementation

Ba
se

Ca
se

Po
w
→

M
ul

t
Lo

op
Co

ns
t

4
Te

rm
Ta

yl
or

x
2

sto
re

d
Fl

oa
t S

uf
fix

LU
T

0.5

1

1.5

·105

Pe
rf

or
m

an
ce

fo
r

C
as

e
3

[m
s]

Fig. 5. Performance Optimisations Effect on Case 3

Figure 5 shows a summary of the performance as different
optimisations are implemented along the section. Hence it can
be concluded that the optimum software implementation of
Equation 2 with the current system would be as shown in
Listing 8.

1 float cos_4_taylor (float x)
2 {
3 float xx = x*x;
4 return 1 - ((xx)/(2)) +
5 ((xx*xx)/(24)) -
6 ((xx*xx*xx)/(720)) +
7 ((xx*xx*xx*xx)/(40320));
8 }
9

10 float math_expr(float x[])
11 {
12 int i;
13 float rtn = 0;
14 for (i=0; i<N; i++){
15 rtn += 0.5f*x[i]+ x[i]* x[i]*
16 cos_4_taylor((tmp-128.0f)/128.0f);
17 }
18 return rtn;
19 }

Listing 8: Optimum Software Implementation

As this section is focusing on software optimisation of
the function, the resource usage remains 4.6064% throughout.
Table XIII shows a summary of the implementation.

TABLE XIII
SUMMARY OF CURRENT IMPLEMENTATION

Average Time (us) Error File Size
Case 1 8696.1 1.3760e-7 78kB
Case 2 353670.6911 6.2143e-7 78kB
Case 3 48173894.68 9.3351e-6 91kB

E. Other Potential Improvements

Due to time constraints, other potential optimisations were
not analysed. It is expected that the next main performance
increase would come from the optimisation of division as
the current hardware is using a software routine to emulate
floating point division. As this division is used both in the main
loop, but also in the calculation of the 4-term Taylor series,
optimisations that take advantage of the constant denominators
could have a big performance impact.

IV. TASK 5 - MULTIPLIER HARDWARE SUPPORT

In order to speed up execution, 3 16-bit multipliers were
added to support hardware based multiply instructions for both
16-bit multiplication and multiply extended instructions. As
mentioned in the previous section, the 4-term Taylor Series
implementation of cos is chosen initially as it was the fastest
and is also thought to be able to take advantage of the
additional multipliers.

The introduction of hardware integer multipliers allows for
multiplication to be implemented using hardware instead of
software routines. Although floating point multipliers are not
integrated into hardware, the software routines to emulate
floating point multiplication can make use of the new instruc-
tions to achieve a speedup in performance.

A. Hardware Multiplier Implementation

The performance and the implementation of the hardware
multipliers for the Nios II core is largely dependent on the
available hardware on the board which the soft core is being
instantiated on.

Each Digital Signal Processing (DSP) block on a Cyclone
V device supports one of three operating modes for multipli-
cation: one 27 x 27 multiplier or two 28 x 19 multipliers or
three 9 x 9 multipliers. [1]. The Nios II also has four different
options for the implementation of hardware multiplication
which are summarised belowb:

Implementation Cycles Till Result Supported Instructions
Logic Elements 13 mul, muli

32-bit multiplier 3 mul, muli, mulxss,
mulxsu, mulxuu

3 16-bit multipliers 3 mul, muli

4 16-bit multipliers 4 mul, muli, mulxss,
mulxsu, mulxuu

b Data obtained from Nios® II Processor Reference Guide. [2]

As the current board does not support 32-bit multipliers,
that option is not available. The board does have embedded
multipliers though, and it is desirable to minimise latency
and logic element usage on our board, so the options are
between the third and fourth rows on that table. Both options
were tested and compared. Although the extra cycle of latency
between result did not appear to have a significant impact, it
was noted that as the compiled code did not make use of the
extra instructions for extended multiplication, there was no
point in having the extra multiplier for extended support.

B. Resource Utilisation

The use of hardware multipliers does increase resource
utilisation on the FPGA, with a few more logic elements
and also the use of DSP blocks as described in Table XIV.
This results in an increase in resource utilisation score from
4.6064% to 5.8431%.

C. Performance

The performance and the relative improvement of the pre-
vious system with a 4 Kbytes instruction cache and a 2Kbyte
data cache with the addition of multipliers is described in Table
XV.

TABLE XIV
TASK 5 SYSTEM FPGA RESOURCE UTILISATION

Logic utilization (in ALMs) 1710 / 32070 (5%)
Total registers 2738
Total pins 47/457 (10%)
Total virtual pins 0
Total block memory bits 345024 / 4065280 (5%)
Total RAM Blocks 52 / 397 (11%)
Total DSP Blocks 3 / 87 (0%)
Total PLLs 1 / 6 (0%)
Total DLLs 0 / 4 (0%)

TABLE XV
PERFORMANCE WITH HARDWARE MULTIPLIERS

Average Time (us) Uplift
Case 1 4673.61 +46.26%
Case 2 184086.29 +47.95%
Case 3 23524843.54 +51.17%

It is observed that the use of hardware multipliers brings
a huge speedup to the performance of the system, due to the
reduced number of instructions and cycles needed to perform
integer multiplication.

D. Cache Size Re-tuning

The previous experiments used the best cache size for a
different problem which was adequate, but as the memory
access pattern differs, in order to get optimal performance,
the sizes of the instruction and data caches should be re-tuned
to see if there is room for improvements in performance, or
if there are resource savings that can be made.

It is likely that a larger instruction cache would be greatly
beneficial as the each loop iteration has significantly more
instructions than the previous problem. Each iteration does not
access multiple elements in the array, so it is likely that the
data cache does not need to be extremely big. Based on these
two factors and in order to reduce compilation and simulation
time, only combinations of caches with size between 4kB and
32kB were tested.

4 8 16 32
7,000

8,000

Instruction Cache Size [kB]

E
xe

cu
tio

n
Ti

m
e

A
vg

C
as

e
1-

3
[m

s] 4kB D-Cache
8kB D-Cache

16kB D-Cache
32kB D-Cache

Fig. 6. Effect of Cache Size on Performance

As the results show in Figure 6, the size of the instruction
cache has a more significant effect on the execution time,
similar to the case in task 3. As the main program is largely
compromised of a loop operation, a cache that is able to fit the
critical loop is best optimised for this program, this matches
our earlier findings in Task 3. Branch mis-prediction is not a
significant factor in the program due to the use of a dynamic 2-
bit branch history table and hence would only likely mispredict
two or three times due to the repetition.

The size of the data cache has a less significant effect due to
the multiple access to elements being one at a time, exhibiting
more temporal locality than spatial locality. Spatial locality is
also present as the elements of the input array are accessed in-
order, which is also exploited by the cache. This is likely the
reason for the small increases in performance as data cache
increases the number of misses is reduced.

Although small, there is a local minima when the instruction
cache size is equal to 8Kbytes. This is likely due to the
larger caches having higher access times and causing a slight
slowdown. As the entire critical loop is able to fit in the
smaller instruction cache, the larger instruction cache is not
made use of due to it’s fixed associativity and block size.
Therefore the optimum configuration is a 8Kbyte instruction
cache and a 32Kbyte data cache. Increasing the data cache
size to 64Kbytes does not provide a significant increase in
performance.

E. Revaluation of Cosine Implementation

With a new cache configuration, it was thought prudent to
revaluate the chosen implementations of cosine in software
and to ensure that changes in the software were not unevenly
affected by the hardware bottleneck. The software is run using
the code described in Section III-D, with the variable being
the implementation of cos.

The -O3 compiler flag is also enabled to allow further
uptick in performance, as it enables a performance uptick
without any changes in resources as discussed in the previous
report. Raising the optimisation level comes in at the expense
of a possible increase in compilation time and possibly more
debug issues due to micro-code optimisations. Hence it is only
enabled at this stage where most bugs are found and fixed.

The performance, accuracy and performance uplift of case
3 relative to the math.h library implementation is listed in
Table XVI.

TABLE XVI
PERFORMANCE AND ACCURACY OF CASE 3 FOR COS IMPLEMENTATIONS

Implementation Performance[us] Error Perf. Uplift
math.h cos 36561997.064 9.11400e-06 0%

6-term Taylor 32395194.480 9.11354e-06 +11.40%
4-term Taylor 21308881.070 9.33511e-06 +41.72%
math.h cosf 20671745.942 9.11354e-06 +43.48%

math.h cosf (-O3) 17993500.440 9.11354e-06 +50.79%
4-term Taylor (-O3) 15829388.416 9.33511e-06 +56.71%

It is observed that although cosf has a best performance
in O0 optimisation level, the explicitly-implemented 4-term

Taylor Series has the best performance when the -O3 flag is
enabled.

Hence it is still safe to conclude that Taylor Series approx-
imation with 4 terms is the most optimal software implemen-
tation within the current system.

V. CONCLUSION

This paper presented a series of system designs designed
with enough memory to compute large cases of functions that
operated on a vector of floats, by integrating off-chip memory
into the design. It also presented a series of software optimi-
sations in C for optimising loops, single-precision calculations
and cosine evaluations. These optimisations were then en-
hanced with the hardware addition of multipliers to accelerate
software emulation of floating point multiplication. The cache
size was also tested and optimised at each stage, to the point
where increases in cache size only led to increase resource
usage without corresponding increases in performance. Figure
7 shows the average performance across the three cases against
the system resource utilisation with the accuracy of Task 3 for
each system illustrated by the colour bar.

4 8 12

1.5

3

4.5

6

·104

Resource Utilisation [%]

A
ve

ra
ge

E
xe

cu
tio

n
Ti

m
e

fo
r

C
as

e
1-

3
[m

s]

0.2 0.4 0.6 0.8 1

·10−3

Fig. 7. Performance vs Resources for Generated Designs in Task 4-5

This suggests that the design’s bottleneck when computing
this function remains at computation rather than memory.
Therefore, to reduce execution time and increase performance,
the next steps should be moving computation from software
into hardware, which may lead to a resource usage increase,
but should bring about a relatively greater performance in-
crease.

REFERENCES

[1] Intel Cyclone V Device Handbook Volume 1: Device Interfaces and
Integration. Intel. (2018,11)

[2] Nios® II Processor Reference Guide. Intel. (2020,10)

	Introduction
	Task 3 - Using SDRAM
	Function Performance
	Cache Size

	Task 4 - A More Complicated Function
	Baseline System
	C Optimisations
	Power and Multiplication
	Use of Loop Constant

	Cosine Optimisations
	Use of cosf
	Taylor Series
	Lookup Table

	Final Optimised Implementation
	Other Potential Improvements

	Task 5 - Multiplier Hardware Support
	Hardware Multiplier Implementation
	Resource Utilisation
	Performance
	Cache Size Re-tuning
	Revaluation of Cosine Implementation

	Conclusion
	References

