
Digital Systems Design Coursework - Report 3
Group 3

1st Kwok Tsz Wing
01708991

twk119@ic.ac.uk

2nd Josiah Mendes
01760165

jam419@ic.ac.uk

I. INTRODUCTION

The following report discusses Task 6 to Task 8 assigned in
the coursework specification for Digital Systems Design. The
following investigation was carried out using Intel Quartus
Lite 20.1, on a Terasic DE-1 SoC board with a Cyclone V
FPGA.

Previous work [1] [2] discussed a software implementation
of Equation 1 for 3 different cases listed in Table I.

f(x) =

N∑
i=1

0.5xi + x2
i × cos(

x− 128

128
) (1)

TABLE I
VECTOR SIZE IN EACH CASE

Number of Elements Size (Bytes)
Case 1 [0:5:255] 52 208
Case 2 [0:1/8:255] 2041 20164
Case 3 [0:1/1024:255] 261121 1044484

An optimised program written in C with a 4-term Taylor
Series cos implementation was used to calculate the result in
each case on a Nios II processor. The Taylor series approx-
imation was used in order to take advantage of the integer
multipliers within the processor. As the Nios II processor has
no floating point hardware, all floating point operations are
implemented using software routines.

II. TASK 6 - CUSTOM FLOATING POINT INSTRUCTIONS

It was noted that a significant performance uplift could be
obtained by moving the floating point operations to hardware.
Therefore, the following section describes the addition of
floating point hardware to the system through the use of
custom instructions and the resultant performance uplift.

A. Floating Point Hardware Blocks

Quartus provides as part of its IP library parametric arith-
metic floating point hardware blocks [3]. These blocks can
be customised for latency or with a target frequency, and as
they are verified blocks, it was decided that they should be
used rather than a custom implementation. As according to the
instructions, floating point blocks for multiplication, addition
and subtraction were added to the system.

Each block’s latency was chosen individually to minimise
the latency of the block while meeting the current timing
constraints of the system running at 50MHz. As these floating
point blocks are going to be executed through the use of
custom instructions, the Nios II’s inability to issue multiple
instructions means that the latency of the block is of higher
importance than throughput.

For floating point multiplication, the block was configured
to have a 2 cycle latency as this was the minimum possible
latency. In the case of the adder and subtraction block, a
block could have been added for each one, but this would be
duplication of resources, as subtraction is just addition with
a negated input. Therefore a combined block was used with
1 cycle latency as the combinatorial block was not able to
meet timing constraints. The amount of resources consumed
by each block is shown in Table II.

TABLE II
PER-BLOCK FPGA RESOURCE UTILISATION

Arithmetic Operation Multiplier Add & Sub
Logic utilization (in ALMs) 75 353
Total registers 32 189
Total pins 98 99
Total virtual pins 0 0
Total block memory bits 0 0
Total RAM Blocks 0 0
Total DSP Blocks 1 0
Total PLLs 0 0
Total DLLs 0 0

B. Custom Instruction Implementation

Although it would have been possible to combine all of
these blocks and add them as a single component within the
Platform Designer, it was deemed unnecessary as it would
introduce additional unnecessary operation select logic that is
already carried out by the Nios II processor. Therefore, each
block was added as a separate component, as a fixed multi-
cycle instruction. These were then implemented as macros
within the C software side to call the hardware blocks when
necessary as shown in Listing 1.

#define FP_ADD(A,B) __builtin_custom_fnff(0x3,A,B)
#define FP_SUB(A,B) __builtin_custom_fnff(0x2,A,B)
#define FP_MULT(A,B) __builtin_custom_fnff(0x1,A,B)

Listing 1: Custom Instruction Macros



Each use of addition or subtraction or multiplication was
replaced with these custom floating point operators for both
within the function for calculating each iteration of Equation
1 and also within the implementation of the 4-term Taylor
Series. The execution time of the new system with all software
optimisations are recorded in Table III. The performance uplift
over the previous system and the error relative to a reference
double implementation are also recorded.

TABLE III
PERFORMANCE WITH FLOATING POINT OPERATORS

Average Time (us) Uplift Error
Case 1 1532.97 +51.96% 1.3760e-7
Case 2 60689.272 +50.92% 6.2143e-7
Case 3 7951508.436 +49.76% 9.3351e-6

As the case array is allocated in stack memory and is
independent of the program size, the program size remains
constant as 76 Kbtytes. The entire system’s resource score
is 6.5812% 1, showing a 0.81% increase over the previous
system with no hardware floating point, with the full resource
utilisation for the entire system shown in Table IV.

TABLE IV
TASK 6 SYSTEM FPGA RESOURCE UTILISATION

Logic utilization (in ALMs) 2039 / 32070 (6%)
Total registers 2955
Total pins 47/457 (10%)
Total virtual pins 0
Total block memory bits 357248 / 4065280 (5%)
Total RAM Blocks 50 / 397 (11%)
Total DSP Blocks 4 / 87 (0%)
Total PLLs 1 / 6 (0%)
Total DLLs 0 / 4 (0%)

It is observed that there is a 50% reduction in execution
latency across all three cases, which is a very large improve-
ment. The increase in resource utilisation mainly comes in
more logic elements being used, but this is insignificant when
compared to the total number of logic elements available on
this particular FPGA. The error also remains the same when
compared to the previous software implementation as the order
of floating point operations has not changed, and it is expected
that the software routines for floating point emulation would
not introduce any errors.

Pipelining of operations is not possible at this stage due
to the Nios II execution model which stalls the processor
until completion, rather than issuing multiple instructions that
use different blocks simultaneously to achieve instruction-level
parallelism. This is something that can be exploited later on
when the inner expression is completely calculated within
hardware.

Additionally, as these floating point instructions are custom
instructions, they are only used in the written program. Other
code such as imported libraries are unable to take advantage
of the new instructions.

1The Resource Percentage is obtained using the formula given in the
specification: 1

3
(Multipliers Used

Total Multipliers + Memory Bits Used
Total Memory Bits + Logic Elements Used

Total Logic Elements )

III. TASK 7
Although the current cosine function is software optimised

with custom floating-point instructions, it still takes up the
majority of the loop body in the generated assembly code.
It was thought that it would be the main bottleneck in per-
formance improvements. Hence hardware optimisation on the
cosine function is explored to further optimise the performance
of the system by implementing a dedicated CORDIC block
optimised for the system frequency of 50MHz.

As simulation and compilation in Quartus is slow, testing
is done on a SystemVerilog testbench and simulated with
Synopsis VCS 2020.03 before running and testing on the
FPGA board. Timing analysis of each block is then evaluated
by compiling the module on Quartus. This provides the latency
of the critical path and the corresponding maximum frequency
through the Timing Analyzer.

A. CORDIC Implementation

Listing 2 describes the implementation of the CORDIC
block in quadrant 1, where input is in the range [0 - π/2].
All int variables represent a fixed-point number. And K, is
the reciprocal of the gain, which is calculated by equation 2.

K = (

N∑
i=0

√
1 + 2−2i))−1 (2)

1 int CORDIC (int angle, int count) {
2 sin = 0;
3 cos = K;
4 for (int i=0; i<count; i++) {
5 if (angle > 0) {
6 sin += cos >> count;
7 cos -= sin >> count;
8 angle -= atan(pow(2,-count));
9 } else {

10 sin -= cos >> count;
11 cos += sin >> count;
12 angle += atan(pow(2,-count));
13 }
14 }
15 return cos;
16 }

Listing 2: CORDIC Implementation in C

It is implemented as a fully folded architecture. Each for
loop in listing 2 is executed in one clock cycle. Figure 1 shows
an overview of the overall architecture of the module. The
Counter Comparator checks the condition of the loop
and asserts a valid signal when output data is ready.

1) Fixed Point Representation: From Equation 1, it is
known that the input is the range of [-1,1], and the cosine
function is an even function. For input in the range [-1,0], the
output should be the same as its negated value. Hence, the
CORDIC block input can be limited in the range [0,1]. Thus,
the output would also be limited in the range [0,1].



Fig. 1. Overall Architecture of folded CORDIC module

Given that both the input and output is in the range [0,1], the
fixed-point number is chosen to have 31 bit of fraction which
could represent numbers in range [0,1]. A higher resolution
of the fraction allows a higher accuracy. Table V shows
examples of the conversion between floating point to fixed
point representation.

TABLE V
FLOATING POINT TO FIXED POINT

Decimal Fixed Point expressed as 32-bit Hexadecimal
1.0 0x8000 0000
0.5 0x4000 0000
0.1 0x0ccc cccc

It is expected that the input and output of the cos function
would be in single precision floating point IEEE 754 format.
Hence conversions need to be applied around the CORDIC
unit, which can be carried out by the Floating Point Functions
Intel® FPGA IP Core [3].

2) Constants: K and atan(pow(2,-count)) in listing
2 can be precalculated and stored as a lookup table. A Python
script is written to have the values precalculated and hard-
coded in the design file.

3) Stages: In general, less stages would be more favourable
in terms of latency and resources of the block, which will be
discussed in more details in follow subsections. However, a
decrease in number of stage comes in the cost of accuracy.

Hence the relationship between number of stages and mean
square error is explored. Accuracy of the module is evaluated
by a Python script using the Monte Carlo simulation technique.
It is ran with 1000 iterations with random uniformed inputs
in the range [0,1] and the mean square error is recorded.

Figure 2 shows the relationship between stages and mean-
squared error, with the horizontal grey line representing the
threshold: e = 10−10. It can be seen that a 16 stage CORDIC
block has a mean square error of 7.67× 10−11 within confi-
dence level of 95%, meeting the threshold error requirement.

0 5 10 15 20 25 30
10−19

10−15

10−11

10−7

10−3

Stages

M
ea

n
Sq

ua
re

d
E

rr
or

Fig. 2. Effect of Number of Stages on Accuracy

B. Throughput Optimisation

The latency of the above design is proportional to the
number of stages in CORDIC. To meet the error threshold,
it takes a minimum of 16 clock cycle to evaluate one value
with this naive design. In order to increase throughput of the
module, stages are unfolded and pipelined. Figure 3 shows
the architecture of a pipelined design. The figure only shows
3 stages of pipeline for easier illustration.

Fig. 3. Overall Architecture of unfolded CORDIC module

As the design is fully pipelined and unfolded, it can produce
one valid output every clock cycle when the pipeline is full.
Data are propagated down the pipeline, processing more than
one value in the module every clock cycle. For a 16 stage
CORDIC, although it still has a latency of 16 clock cycle, the
module can reach a throughput of 1 value per cycle.

Data are propagating down the pipeline, having valid data
output every clock cycle, the Counter Comparator block
is not needed for condition checking. Thus it is removed from
the design.

C. Latency Optimisation

It was observed that with the implementation in subsection
III-A, the module critical path takes 6.373ns with each stage
taking up one clock cycle. Assuming that the path is also
the critical path of the entire system, the system can reach a
frequency of 156.91MHz.

The current system is driven by a 50MHz clock, to optimise
latency for this frequency, the module should be designed
to have a critical path close to 20ns. This can be achieved
by unrolling bits, having more than one stage performed per



cycle. With 20 / 6.373 = 3.138, it is theoretically possible
to fit 3 stages in one cycle. This is confirmed with a critical
path of 15.42ns when a 3-bit-unrolled CORDIC module is
implemented.

Figure 4 shows the architecture of a folded and unrolled
design.

With a 3-bit-unrolled design, number of stages should be a
multiple of 3. 18 CORDIC stages is chosen, because it is the
minimum number to meet the accuracy threshold. Hence, the
design has a latency of 6 clock cycles, as compared to 16 clock
cycles in the original design with an improve in accuracy.

Fig. 4. Overall Architecture of unrolled CORDIC module

Table VI shows a comparison between the two designs in
terms of latency, hardware units and throughput.

TABLE VI
COMPARISON OF THE TWO CORDIC IMPLEMENTATION

Throughput Optimised Latency Optimised
Latency 16 cycles 6 cycles

CORDIC_arith Unitsa 16 3
32-bit Registers 48 12

Throughput (per cycle) 1 0.1667

a CORDIC_arith refers to a combinatorial block that implements one
stage of CORDIC.

D. Inner Expression

With the two designs of the CORDIC module, they are used
to evaluate the inner expression of equation 1 by providing a
custom instruction to the CPU that returns the result for a
given x value.

#define ACCEL(A) __builtin_custom_fnf(0x1,A)
float math_expr(float x[], int M){
float rtn = 0;
for (int i=0; i<M; i++){
rtn += ACCEL(x[i]);

}
return rtn;

}

Listing 3: Software Implementation

Figure 5 shows an data flow graph to evaluate the inner
expression. Only combinatorial logic is shown, registers are

added in actual design to pipeline and ensure correct timing.
Table VII describes the high level functionality of each block
in figure 5.

Fig. 5. Data Flow of Inner Expression

TABLE VII
BLOCK DESCRIPTIONS

Module Details
CORDIC CORDIC module
normalise Normalise input of range [0-256] to [-1,1]

square The output is the square of the input
FloatToFixed Convert floating point numbers to fixed

point representation with 31 bits of fraction
FixedToFloat Convert fixed point numbers with 31 bits

of fraction to floating point representation
MAC Multiply and Accumulate

With Intel’s floating point IP core, it takes 4 clock cycles
to evaluate the values before passing into the CORDIC block
and 4 clock cycles afterwards.

Table VIII shows the comparison between the throughput
optimised design and latency optimised design when used to
evaluate the inner expression. The throughput optimised design
is configured to have 18 stages, ensuring designs are compared
with the same accuracy.

It is apparent that the latency optimised CORDIC design is
more suitable in this context. It provides both smaller latency



TABLE VIII
PERFORMANCE AND RESOURCE USAGE OF TWO INNER EXPRESSION

IMPLEMENTATION

Throughput Optimised Latency Optimised
Latency 26 cycles 14 cycles
Case 3 204 156

Average Time (us)
Case 3 Error 8.892e-6 8.892e-6

Resource Usage 8.9568% 8.6034%

and resource usage. As only one element would be evaluated in
the module at any instance, due to the Nios II execution model,
there will not be any benefits by having the design unfolded.
On the contrary, unfolding the design would lead to an increase
in resource usage, which is confirmed both theoretically and
in reality as shown in Table VI and Table VIII respectively.

Hence, the latency optimised design is chosen for this task,
with performance recorded in table IX.

TABLE IX
PERFORMANCE AND ACCURACY WITH LATENCY OPTIMISED CORDIC

DESIGN

Average Time (ns) Error
Case 1 34.30 1.3760e-7
Case 2 1072.42 6.2143e-6
Case 3 156386 8.892e-6
Case 4 1349.39 nil

E. Verilog Implementation of Floating Point Units

Intel IP cores were utilised for the floating-point modules.
However, it was discovered that the latencies of the cores are
too high. For instance, the latency of a floating point multiplier
is 2 clock cycles. Thus it was thought that performance can
be further improved by implementing the modules manually
with Verilog. This gives more control of the logic and more
specialised functionality of the blocks.

Fig. 7. Data Flow of the Normalise Module

1) Normalise: normalise was implemented with the
data flow as shown in figure 7. It takes less logic to do
division in floating point representation while more logic to
do subtraction. Hence it is calculated as (x/128) -1 with the
FloatToFixed module integrated with the normalise
module, where the conversion happens after the division but
before subtraction.

Division by 128 can be done easily be subtracting the
exponent of the floating-point number by 7.

2) Square: A floating-point multiplier is written with algo-
rithm as shown in listing 4.

assign c_significand =
{1'b1,a[22:0]} * {1'b1,b[22:0]};
assign exp = c_significand[47] ?
a[30:23] + b[30:23] - 8'd126 :
a[30:23] + b[30:23] - 8'd127;
assign out_significand = c_significand[47] ?
c_significand[46:24] :
c_significand[45:23];
assign c = {a[31]ˆb[31], exp, out_significand};

Listing 4: Floating Point Multiplier

3) FloatHalf: Instead of using a multiplier to multiply the
input by 0.5. A specialised hardware to divide the input by 2 is
designed. This is easily achieved by subtracting the exponent
of the input by 1.

4) MAC: The MAC module takes in 3 inputs, multiply the
first two and accumulate with the last input. The floating point
multiplier in the square module is reused, along with an
additional floating point adder.

In general, floating point addition is done as shown below
with an example of 8.70 × 10−1 + 9.95 × 101 calculated in
base 10 for easier illustration. [4]

1) Rewrite the smaller number such that its exponent
matches with the exponent of the larger number.
8.70× 10−1 = 0.087× 101

2) Add the significands
9.95 + 0.087 = 10.037
and write the sum
10.037× 101

3) Put the result in normalised form by shifting
significant and adjusting exponent
10.037× 101 = 1.0037× 100

However, it is known that the addend and augend will
always be positive numbers in this context, so the exponent
of the sum will always be equal or +1 of the exponent of the
larger number. Instead of shifting the significand in step 3,
the exponent can be determined by the MSB of the sum of
significands as shown in listing 5:

assign q = c_significand[24] ?
{1'b0,exp+8'b1,c_significand[23:1]} :
{1'b0,exp,c_significand[22:0]};

Listing 5: Floating Point Adder

The proposed custom implementation of the modules show
significant improvements in latency as shown in table X.
The improvement in performance comes in the cost of slight
increase in resource usage and less generality.

These modules are implemented with specific functionality
and can be only used for this use case. For instance, the
floating-point adder in MAC block can only calculate positive
numbers. It is also assumed that inputs will always be a
“normal” number, they would have undefined behaviour for
inputs such as NaN, Inf. Although such practice is not ideal
for commercial design, it was decided to be sufficient for this
project.



Fig. 6. Architecture of Implementation of Inner Expression

TABLE X
MODULE’S CRITICAL PATH

Modules Critical Path (ns)
Normalise 7.67

Square 5.92
FloatHalf 1

MAC 12.34

TABLE XI
PERFORMANCE AND ACCURACY

Average Time (ns) Error
Case 1 23.04 1.3760e-7
Case 2 826.071 6.2143e-6
Case 3 126779 8.892e-6
Case 4 936.688 nil

With these modules, it is possible for the system to only take
1 clock cycle before and after the CORDIC unit to evaluate
the inner expression. In such case, the design has a latency
of only 8 clock cycles with 18 CORDIC stages, as compared
to 14 clock cycles in previous section. Figure 6 shows the
architecture and timing of the module.

Table XI and table XII shows a summary of the performance
and resource utilisation respectively after adding dedicated
hardware block to compute the inner part of the expression

TABLE XII
RESOURCE UTILISATION

Logic utilization (in ALMs) 3616 / 32070 (11%)
Total registers 3069
Total pins 47/457 (10%)
Total virtual pins 0
Total block memory bits 357428 / 4065280 (9%)
Total RAM Blocks 52 / 397 (11%)
Total DSP Blocks 5 / 87 (6%)
Total PLLs 1 / 6 (17%)
Total DLLs 0 / 4 (0%)

The hardware implementation of the inner expression of
Equation 11 leads to a significant uptick in performance in
comparison to previous software implementations with general
purpose hardware (decreasing Case 3 latency by more than
98% in comparison to Task 6), showing the improvement that
can be brought about by customisation of hardware.

However, this can be improved further by moving more of
the expression into hardware for large n, as the use of the
CPU to control execution incurs a significant overhead cost,
which will be explored in the following section.



Fig. 8. Data Flow of Complete Acceleration Block

IV. TASK 8
With the inner expression of Equation 1 now moved to

hardware, the next obvious improvement is to move more of
the expression into hardware, including the array access and
also the summation of each inner expression calculation.

A. Data Transfer
Within the last iteration of the system, each value of the

array is moved from memory to the CPU and then passed
into the custom accelerator block for the inner expression that
does the multiplication, addition, and cosine calculation. After
the inner expression is evaluated, the result is then passed
back to the CPU and summed by passing that value and the
current accumulator value to a floating point addition block.
Therefore, there can be multiple reads and writes to and from
the off-chip memory where the stack is located. As the off-
chip memory can require multiple cycles for each access, this
is a potential bottleneck in the system. The management of
the loop and accumulation being in software also introduces
additional overheard for each loop iteration.

Therefore, an accelerator which makes use of Direct Mem-
ory Access (DMA) to where the array is held is proposed.
Using DMA takes the CPU out of the data transfer path and
the data goes directly from memory to the accelerator block.

As discussed in [2], the off-chip memory is mapped to
the system using an SDRAM controller block which provides
an Avalon Memory Mapped (Avalon-MM) agent interface to
the off-chip memory. Therefore in order to perform direct
access to memory, the accelerator block needs to have an
Avalon-MM host interface to initiate data transactions [5]. The
Modular Scatter-Gather Direct Memory Access (MSGDMA)
block included within the Intel Embedded IP library provides
such a controller that can either write to another Avalon-MM
agent, or as an Avalon Streaming (Avalon-ST) source [6].
The core also provides a FIFO to buffer transactions so that
memory transactions from off-chip memory can take place
without waiting for the write transactions to complete. As it is
a scatter-gather core, if the arrays were kept in non-contiguous
memory, it would also be able to handle them.

The MSGDMA was added to the system in the Avalon-MM
host to Avalon-ST source configuration. This was deemed to
be more suitable for the current problem as the accelerator can
be configured to take in a stream of data.

The MSGDMA is configured through two Avalon-MM
agent ports, one which takes in descriptors providing the start

address and number of bytes to read from memory. Multiple
descriptors can be sent as an array to support reads from non-
contiguous memory. The other Avalon-MM agent port holds
the control and status registers that are used to check the
transaction status and also initiate the data transfer. Although
this could theoretically be done in hardware, it was decided
to do the configuration of the MSGDMA through the Nios II
core as it is more flexible and requires less time to design,
verify to meet the device protocol requirements.

B. Acceleration Block

1) Custom Instruction: In order to read the value of the
accumulator, and also inform the accelerator of how many
values are being passed into the accelerator block, a custom
instruction interface is maintained.

#define ACCEL(A) __builtin_custom_fnf(0x2,A)
float math_expr(float x[], int M){
alt_msgdma_construct_standard_mm_to_st_descriptor
(

dev_ptr, a_desc_ptr,
&x[0], N*sizeof(float), 0

);
alt_msgdma_standard_descriptor_async_transfer(
dev_ptr, a_desc_ptr
);
return ACCEL(M);

}

Listing 6: Software Configuration of DMA and Accelerator

Within the software, the asynchronous data transfer is
started, and the accelerator block immediately begins operating
on the values that are streamed in. Within the accelerator, a
counter register is initialised that keeps track of how many val-
ues have been added to the accumulator. During the streaming
process, at some point in time, the custom instruction is also
called and the number of elements is passed to the accelerator.
The accelerator then uses this value to compare the given value
with its internal counter to determine when the evaluation is
complete. When the evaluation is complete, the valid signal of
the custom instruction interface is asserted, and the value of
the accumulator is passed back to the processor. The software
implementation of this process is shown in Listing 6.

The asynchronous nature of the transaction, where the data
transfer and the computation is carried out at the same time
means that the runtime of the process is the maximum of the



memory access time and the computation time, given by the
following equation:

Truntime = max(Tmemory access, Tcomputation)

2) CORDIC Implementation: As one value can be passed
into the block every cycle, the design can benefit from unfold-
ing and fully pipelining the design. The throughput optimised
design as stated in Section III with 18 stages is utilised,
reaching a throughput of 1 value per clock cycle. Figure 8
shows the architecture of the design.

A register and a floating point adder is added to the final
stage of the pipeline. They act as an accumulator to calculate
the sum of the loop in equation 1. Such implementation does
not have a valid output signal as data are being propagated
down the pipeline. Hence it solely relies on the counter register
stated in previous subsection to keep track of whether the
output data is valid.

TABLE XIII
PERFORMANCE AND ACCURACY OF INITIAL SYSTEM

Average Time (ns) Error
Case 1 57.29 1.3760e-7
Case 2 169.74 6.2143e-6
Case 3 14926 8.892e-6
Case 4 185.98 nil

Table XIII records the performance of the system with DMA
and acceleration block. The system has a resource usage of
4.7470%.

It was observed that the execution time for case 1 increases
compared to section III. It is suspected that this is caused by a
high overhead when streaming data from the DMA. However,
improvement in performances of case 2, 3 and 4 is significant.
The improvement in these cases outweigh the decrease in
performance of case 1. Hence it can still be concluded that
the design is more optimised compared to section III.

3) Unrolling CORDIC Design: With such a high-speed
performance, it is thought that performance can be further
improved by reducing the pipeline depth, thus reducing the
time needed to fill up the pipeline. Hence, the CORDIC block
is implemented as 3-bit-unrolled and fully unfolded. Figure
9 shows the data flow of a 3-bit-unrolled 9-stage CORDIC
design. In the actual hardware, it is implemented with 18
stages.

This does not have a huge execution time reduction as was
seen in Task 7 as the system is now pipelined and limited
by the memory access time. The greater impact is on the
resource usage. As there are less pipeline stages, less registers
are needed, for the CORDIC block and to maintain the timing
of the inputs to the MAC for x2 and 0.5x. The resource usage
of the system decreases from 4.7470% to 4.7136%.

C. Performance Analysis

Table XIV and table XV shows a summary of the perfor-
mance and resource utilisation respectively with the optimised
hardware block to compute the expression.

Fig. 9. Data Flow of the CORDIC Module

TABLE XIV
PERFORMANCE AND ACCURACY OF UNROLLED SYSTEM

Average Time (ns) Error
Case 1 57.29 1.3760e-7
Case 2 169.74 6.2143e-6
Case 3 14866 8.892e-6
Case 4 185.70 nil

TABLE XV
RESOURCE UTILISATION

Logic utilization (in ALMs) 3547 / 32070 (11%)
Total registers 2797
Total pins 47/457 (10%)
Total virtual pins 0
Total block memory bits 31785 / 4065280 (8%)
Total RAM Blocks 12 / 397 (3%)
Total DSP Blocks 2 / 87 (2%)
Total PLLs 1 / 6 (17%)
Total DLLs 0 / 4 (0%)

When compared with section III, it is observed that the
resource usage significantly decreases by 45%. This is partially
due to the requirement that the Nios II/e processor, that does
not have a cache or multipliers, is used as opposed to the
Nios II/f processor that was used previously. This significantly
reduces total RAM blocks used in the FPGA board by 77%
and the number of DSP blocks from 5 to 2.

Although the design of the accelerator block means it can
process 1 new value per cycle, due to the SDRAM’s read
rate limitations, the runtime is now memory-bound rather than
computation bound. Although the MSGDMA is also capable
of producing a new value per cycle, as the SDRAM has a
latency for reads and is not capable of bursts of more than 16,
data is delievered to the accelerator in 4 consecutive blocks of
data, followed by a period with no valid data. This behaviour
was observed through the use of SignalTap to monitor the
accelerator block when the program was running in order to
profile the design.



Fig. 10. Architecture of Overall Final System

V. CONCLUSION

Figure 10 presents the final system designed to accelerate
the computation of Equation 1 over papers [1], [2] and this
paper, moving gradually from a software computation on a
general purpose computing system to a hardware computation
making use of programmable logic. This paper presented the
improvement that could be gleaned by adding floating point
units for general arithmetic, the implementation of throughput
optimised and latency optimised CORDIC blocks for cosine
evaluation and the use of direct memory access to perform a
streaming operation.

Ba
se

Ca
se

4
Ta

yl
or

SW
In

te
ge

r M
ul

t
FP

Bl
oc

ks
H

W
In

ne
r

D
M

A
+

A
cc

101

102

103

104

105

Pe
rf

or
m

an
ce

fo
r

C
as

e
3

[m
s]

2

4

6

8

10

R
es

ou
rc

e
U

til
is

at
io

n
[%

]

Fig. 11. Performance Optimisations Effect on Case 3

As the system moved from software to hardware, it was
observed how there was a change in the composition of the
runtime, moving from a system where it was dominated by
CPU execution time of a software routine emulating floating
point operations, to a system where the limiting factor was
the memory access time. Therefore, future improvements for
performance are focused on improving the rate at which data
can be read from memory.

It is also noted while there is an initial increase in resource
utilisation to increase performance of the general purpose
system by adding more hardware, as the design becomes
more specialised, the device footprint becomes smaller, at the
expense of reduced flexibility.

VI. FUTURE IMPROVEMENTS

A. Increasing Clock Frequency
The throughput of the system is limited to 1 value per clock

cycle due to hardware constrain. Hence, if the clock frequency
can be increased, the execution time can be decreased signif-
icantly while the throughput remains to be 1 value per cycle.

B. Increasing Throughput
Although the DMA specification has limit only one data

transfer per clock cycle, it is possible to set the transfer up to
quadword (128-bit) provided that there is a supported memory
host. This would be equivalent as transferring 4 data (32-bit
float) per clock cycle. By duplicating the accelerator block
by 4 folds, the maximum throughput can increase to 4 values
per clock cycle. The execution time can reduce by 4 time
theoretically while keeping the clock frequency to 50MHz.

C. Decreasing Word Size
Resource usage can be further optimised by decreasing the

word size of the CORDIC block. Current implementation has
a word size of 32 bits with 18 stages. However, it is observed
that same accuracy can be achieved by a smaller word size
as depicted in Figure 12. For instance, implementing the
CORDIC design with a word size of 20 bits with 16 stages can
achieve the same accuracy as the current implementation. With
a smaller word size, the arithmetic blocks (e.g. adder, shifter)
in the CORDIC block can be implemented with reduced
resource usage.

0 5 10 15 20 25 30
10−19

10−14

10−9

10−4

Stages

M
ea

n
Sq

ua
re

d
E

rr
or

32-bit word
24-bit word
20-bit word
18-bit word

Fig. 12. Effect of Word Size on Accuracy of CORDIC



REFERENCES

[1] Kwok, T. & Mendes, J. Digital Systems Design Coursework - Report 1.
(2022,2)

[2] Kwok, T. & Mendes, J. Digital Systems Design Coursework - Report 2.
(2022,2)

[3] Intel Cooperation. Floating-Point IP Cores User Guide, Section
16 FP FUNCTIONS Intel® FPGA IP or Floating Point
Functions Intel® FPGA IP Core. (2021, 09) available at
https://www.intel.com/content/www/us/en/docs/programmable/683750/
20-1/fp-functions-or-floating-point-functions-72394.html.

[4] Philip Eddie Edwards Floating Point Numbers. (2004,12) available at
https://www.doc.ic.ac.uk/∼eedwards/compsys/float/

[5] Intel Cooperation. Avalon® Interface Specifications (2022, 01).
[6] Intel Cooperation. Embedded Peripherals IP User Guide, Sec-

tion 31 Modular Scatter-Gather DMA Core. (2020, 09) avail-
able at https://www.intel.com/content/www/us/en/docs/programmable/
683130/21-4/modular-scatter-gather-dma-core.html.

[7] Intel Cyclone V Device Handbook Volume 1: Device Interfaces and
Integration. Intel. (2018,11)

[8] Nios® II Processor Reference Guide. Intel. (2020,10)

https://www.intel.com/content/www/us/en/docs/programmable/683750/20-1/fp-functions-or-floating-point-functions-72394.html
https://www.intel.com/content/www/us/en/docs/programmable/683750/20-1/fp-functions-or-floating-point-functions-72394.html
https://www.doc.ic.ac.uk/~eedwards/compsys/float/
https://www.intel.com/content/www/us/en/docs/programmable/683130/21-4/modular-scatter-gather-dma-core.html
https://www.intel.com/content/www/us/en/docs/programmable/683130/21-4/modular-scatter-gather-dma-core.html

	Introduction
	Task 6 - Custom Floating Point Instructions
	Floating Point Hardware Blocks
	Custom Instruction Implementation

	Task 7
	CORDIC Implementation
	Fixed Point Representation
	Constants
	Stages

	Throughput Optimisation
	Latency Optimisation
	Inner Expression
	Verilog Implementation of Floating Point Units
	Normalise
	Square
	FloatHalf
	MAC


	Task 8
	Data Transfer
	Acceleration Block
	Custom Instruction
	CORDIC Implementation
	Unrolling CORDIC Design

	Performance Analysis

	Conclusion
	Future Improvements
	Increasing Clock Frequency
	Increasing Throughput
	Decreasing Word Size

	References

