
RISCALAR
A Cycle-Approximate, Parametrisable RISC-V

Microarchitecture Explorer & Simulator

Josiah Mendes
National University of Singapore / Imperial College London

{e097832}@u.nus.edu, {jam419}@ic.ac.uk

Abstract—Riscalar is a highly parameterisable, extensible,
and modular computer architecture simulation tool designed
around the RISC-V ISA. The main feature of Riscalar that
differentiates it from other RISC-V educational simulators is
its ability to explore a large design space with configurable
pipeline widths, execution orders, functional units, cache sizes
and branch predictors. It is capable of simulating user designed
programs through standard cross-compilation tools, and can be
used to explore the relationship between processor microarchi-
tecture, compiler optimisations and program performance. This
paper details the design and implementation of Riscalar using
Rust, highlighting the abstractions made to implement a cycle-
approximate simulator.

Index Terms—computer microarchitecture modelling, com-
puter architecture educational tool, performance modelling,
RISC-V

I. INTRODUCTION

Developing an understanding of computer microarchitecture
is an essential part of every Computer Engineering undergrad-
uate program. Most courses will explain the theory behind
how different parts of the processor facilitate code execution,
increase performance and combat bottlenecks.

To further this understanding, a practical aspect is usually
included in the course. This may be the implementation of
a synthesisable RISC processor using a hardware description
language, or to build a simple functional software simula-
tor written in a high level language such as C++ or Java.
While both of these approaches help to facilitate students’
understanding of computer microarchitecture and also to build
their programming skills, they do not place enough of an
emphasis on performance and the constraints that computer
architects face in the real world. It is easy for the focus to be
purely placed on functional correctness, resulting in unrealistic
designs of single-cycle architectures with long critical paths
and a very low clock frequency.

Another approach to verifying theoretical knowledge is by
observing the behaviour of computer architecture through the
use of simulators. This involves students configuring systems,
acquiring statistics and interpreting the obtained data to iden-
tify areas of improvement for the microarchitecture. Such
simulators can fall into two categories, those that model an
existing system or those that provide the user with a set of
choices to design a new microarchitecture at the expense of
reduced accuracy. An efficient simulation tool coupled with

comprehensive data collection mechanisms allows students to
explore the performance impact of different system configu-
rations while also being able to observe how there may be
an impact on power or area. When such a simulator can
be coupled with visual descriptions of the process each unit
within the CPU is carrying out at a given time, this becomes
a powerful tool for students to engage with the constraints
faced when designing a processor. Such a simulator can also
be helpful in teaching students how to optimise their code for
a particular microarchitecture which is particularly useful in
embedded programming.

While the idea of using simulation to teach Computer
Engineering is not new, as efforts have being carried out
for over three decades, there is a gap in the field where
modern simulation tools targeting popular instruction set ar-
chitectures today such as RISC-V are unable to match the
same level of simulation customisation that certain older
“outdated” tools provide. To fill this gap, this paper presents
a micro-architecture simulator named Riscalar that is highly
configurable and parametrisable designed specifically for the
RISC-V ISA.

The report is structured as follows: Section II covers the
microarchitecture simulation landscape today, with a particular
focus placed on education and simulation tools targeting
RISC-V and how Riscalar is classified as a simulator com-
pared to other similar tools; Section III introduces different
aspects of the RISC-V ISA that need to be considered when
implementing a functional simulator, including architectural
registers, instruction decoding and execution, privilege levels
and exceptions; Section IV shows how the cycle approximate
simulator is implemented, covering instruction execution to-
gether with the configurable parameters that affect how many
cycles an instruction takes to retire and the components outside
of the main pipeline that affect performance.

II. LITERATURE REVIEW

A. Simulators for Education

The advantages of using simulation as a tool for teaching
computer architecture has been discussed by many authors
since the early 1990s, such as [1], [3], [2]. More recently,
[12] and [15] confirm that these findings still remain true,
and can be applied to new learning modes today such as
distance-learning, flipped classroom teaching modes, blended



remote learning and MOOCs (Massive Open Online Courses).
Limiting such courses to textbooks and lectures can be ineffec-
tive, and simulators provide a way for students to understand
concepts through their own thinking abilities helping them to
master the content [13] [14].

[10] presented a variety of educational simulators for teach-
ing computer architecture and organisation available in 2009,
classifying educational simulators into two groups, full-system
creation and system simulation. The first group primarily
centered around tools that were explicitly designed for doing
general purpose digital design or professional simulation.
Riscalar falls closer to the second group with configurable
parameters that need to be set before program runtime, along
with tools such as SimpleScalar [6].

SimpleScalar is a very popular tool in both the author’s own
undergraduate experience and in this field with its attached pa-
pers being cited over 2000 times. It is a suite of command-line
hardware simulators that emphasizes performance and flexibil-
ity over simulation detail. The sim-outorder simulator in
SimpleScalar has a completely configurable pipeline, execu-
tion model, branch predictor and cache hierarchy, making it
especially valuable. It serves as one of the main inspirations for
Riscalar and many other works such as [9]’s neural network
based performance prediction model for teaching trade-offs
based on SimpleScalar performance; [4] which implemented
a power evaluation methodology extension for SimpleScalar;
and [5] which provided a SimpleScalar graphical interface.
[7] provides a more comprehensive overview of extensions
made to SimpleScalar to improve it as a teaching tool. While
SimpleScalar can be considered to be a seminal work in
the educational simulator tooling space, it uses a highly
customised toolchain for program development and has fallen
behind in ISA support.

RISC-V is an increasingly popular choice as an ISA within
the computer architecture research and teaching space since
its introduction in 2011 [21]. It is a load-store architecture
that is designed with a base instruction set and a set of
extensions that add instructions for special operations [21].
[18] presented a summary paper covering 15 openly-released
RISC-V cores available in 2019. In more recent years, it
also has been rising in popularity as an industry choice for
commercial processor implementations, such as in Western
Digital’s storage processors[19], Espressif’s hobbyist micro-
controllers[22], and Google’s Titan M2 security chips for their
Pixel 6 smartphones [23].

As a result of both RISC-V’s increasing popularity in in-
dustry and educational focus, many recent simulators designed
for education have also used this ISA.

[24] presented a visual simulator of processor pipelines
based on the RISC-V ISA with a built-in assembler, com-
piler support and cache simulator. While not parameterisable,
it provides the option for users between 5 pre-determined
microarchitectures to see how different pipeline depths and
forwarding schemes affect execution. [25] also presented a
tool for the investigation of slow-downs in RISC-V program
execution and further investigation of the internal state of the

pipeline architectural blocks through a web-based interface.
The web-based interface was especially novel, considering
most simulators run as standalone software [10], it reduces
the barrier of entry allowing any device with a compatible
web-browser to be able to use this simulator. [16] extended
this approach and provided a full C compiler and assembly
viewer/editor within the browser, as well as adding a slightly
customisable Verilog HDL generation for a soft-core imple-
mentation.

B. General Computer Architecture Simulation

[17] presents a very detailed overview of computer archi-
tecture simulators, stating that classification can be based on
several properties:

• Detail of Simulation
• Scope of Target Simulation
• Input to the Simulator
Under this categorisation, Riscalar is a:
1) Cycle-Approximate Simulator: As the aim of this simu-

lator is to provide students with an understanding of how dif-
ferent microarchitecture decisions affect a program’s runtime
and performance, detail is less of a concern, with the focus
being on system-level parameters, allowing other details to be
abstracted away.

2) Application Level Simulator: Full system simulation
reduces simulation speed due to increased simulation com-
plexity, takes a large amount of time to develop and requires
a full kernel image for application profiling thus increasing
the barrier to entry [8]. Application level simulation is the
alternative approach which is taken, using techniques such as
system call emulation to mimic the OS functions or limiting
simulators to only running machine code. [8] [6].

3) Execution Based Simulator: Execution-based stimulus
provides a more realistic target in comparison to trace-
driven simulation through the ability to execute mis-predicted
branches. From an educational point of view, this approach
allows more experimentation as arbitrary code can be compiled
and run on the simulator. Additionally, it will also expose users
to the cross-compilation toolchain leading to an understanding
of the tools that fulfil this purpose. Considering the lack of
available RISC-V hardware to obtain traces, the execution
driven approach also reduces barrier of entry.

III. FUNCTIONAL SIMULATION

Riscalar implements two simulation modes, one functional
and one cycle-approximate. The functional model provides a
useful reference for checking program correctness, producing
an instruction profile for an unknown program by extracting
statistics, and obtaining memory access information.

This functional model hides a lot of actual implementation
details with a focus on decoding instructions encoded in
binary format from a compiler’s output and executing those
instructions and observing how they affect both architectural
register state and control status registers. Its development
also helped to build up a reusable model for processor main



memory, including the loading of instructions, reading and
writing different sized chunks of memory etc.

The functional simulator also runs a lot faster than a latency
simulator due to the reduced detail, and it is used by the
latency simulator to implement fast-forward execution to a
particular point in time before starting detailed simulation
as done by SimpleScalar and gem5 [6][11]. Both simulators
share the same ISA, having full support for the base integer
instruction set with support for 64 bits of address space
(RV64I), combined with the standard extension for integer
multiplication and division (“M extension”) [21].

A. Architecture

Fig. 1. Functional Simulator System Architecture

The system architecture for the functional simulator is
shown in Figure 1, it is implemented with minimal compo-
nents, only containing what is strictly necessary to emulate
a RISC-V system. The two stages that are running within
the simulator loop are the Fetch stage and the Execute stage
which also handles instruction decoding. Each instruction is
decoded and executed within the processor using the asso-
ciated execute function, modifying either main memory
through reads/writes or the architectural integer registers. If
an exception occurs, the core does not trap, but exits the sim-
ulation gracefully stating the exception code and description.

B. Memory

Memory addresses in RISC-V are byte addressable, there-
fore the main memory is simply modelled as a vector of
unsigned bytes (u8). The model is created as a struct with
methods that act on immutable and mutable references to itself
for reads and writes respectively. The public read() and
write() functions both take an argument for address and
size, with an additional parameter for value in the write
method. Each public method then calls private methods de-
pending on the size parameter for bytes, halfwords, words
and doublewords. The memory base address is then used to

translate the given address to index the vector to get or set the
chosen value.

To load the binary produced by the compiler, the filename
is passed as a command line argument and read into a vector
of bytes using the standard read_to_end() function. This
vector of bytes then is used to replace a portion of main
memory from the base address where the core starts fetching.

C. Architectural Registers

As the number of architectural registers is fixed by the ISA,
a statically allocated array of u64 values is used in place
of a vector. The zero register x0 is hardwired to 0 and this
is maintained by initialising all the values in registers to 0
on creation and ignoring all writes to x0. The RISC-V ISA
does not define any other dedicated registers for stack pointers
or return addresses, but there are standard software calling
conventions in place that define which registers should be
used for what as specified in Chapter 25 of [21]. One of the
conventions that requires initialisation is that the stack pointer
is stored in x2. As this register is initially 0 and the stack
grows downward, the storage location for stack information
is incorrect. So the known memory size and memory base
address is used to initialise the value of x2 on creation.

D. Instruction Decode and Execution

Each instruction fetched from memory is decoded and
executed in a single stage for this simulator. The top level
public function execute() separates the instruction through
shifts and bitwise and operations into the different fields such
as opcode, immediate, register source 1, register souce 2,
register destination and then determines which private function
to call based on the opcode.

Each individual function is then implemented as a large
match statement based on the passed parameters to deter-
mine which specific instruction should be executed with what
values. Each function returns a Result<(), Exception>
type so that an exception (n.b. Not a program exception, but a
RISC-V exception) can be thrown by the processor if there is
an issue with the decoding or execution of the instruction. This
exception would not terminate the program, but gracefully be
returned up the call stack and printed for the user to see.

The full list of instructions and their encoding can be found
in chapter 24 of [21].

E. Exception Handling

Each operation performed by the CPU returns the Result
type, with the error value being an enum that implements the
14 possible exception codes in the RISC-V ISA as specified in
Table 3.6 of Volume II of the RISC-V Privileged Architectures
document. The Result<T> type is used to handle exceptions
in all parts of the core. This type is an enumeration type used
for returning and propagating errors that forms part of the stan-
dard library in Rust. It represents the result of a computation
that can either be successful, returning variant Ok(T) with a
value of type T or an error with an associated error value of



type E with variant Err(E). e.g. An unaligned read would re-
turn a Err(Exception::LoadAddressMisaligned)
from the memory model.

On the occurrence of an exception, the RISC-V hart should
trap (transfer control to a trap handler), but currently this is not
implemented for the functional simulator. When an exception
occurs, the main execution loop breaks, and the error is output
on the command line.

F. Privilege Mode

At any time a RISC-V hart is running with a given privilege
level that determines the running software’s access to hardware
during execution. RISC-V currently defines three privilege
levels ordered from highest privilege to lowest - machine mode
(M-mode) for inherently trusted code such as the bootloader,
supervisor mode (S-mode) for the kernel, user mode (U-mode)
for user processes. Implementations of a RISC-V core do
not need to implement every privilege mode, only the base
M-mode is required which trades off reduced isolation for
lower implementation cost. The privilege levels also affect
the implementation of features and the number of control and
status registers (CSRs) there are in a system [20].

For the current simulation, only M-mode is implemented
along with the corresponding CSRs to simplify implemen-
tation. For a pure application-based simulator, the security
provided by the other privilege levels can be thought of being
less necessary as the programs being run on the simulator are
expected to be trusted benchmarks or code written by the user.

G. Functional Simulator Evaluation

Each instruction was individually tested to make sure that it
returned the correct result, and a simple Fibonacci calculation
was used as an overall integration test to make sure that
the instructions worked together. As system calls are not
implemented yet, the correctness of the program was checked
by asserting that the function return register contained the
correct value.

TABLE I
FUNCTIONAL SIMULATOR SUMMARY

Supported ISA RV64-IM
Privilege Levels Supported M only

Syscall Support N
Exception Handling N

Lines of Code 1.2K
Binary Size 505KB

MIPS1 57
CPI 1.00

Memory Usage1 664KB
1 as tested with fib(30)

As this iteration of the simulator has no detail in simulation,
it has a high simulation speed without any optimisation
(∼14 times faster than SimpleScalar’s sim-fast functional
simulator) and a low memory footprint as shown in Table I.

IV. LATENCY SIMULATION

As most high-performance RISC-V processor implemen-
tations are not openly available for modelling and it is a
significant undertaking to design every component from the
ground up, the simulator is not modelled to match a specific
implementation, but rather follows a general model of how
each component works. Components such as the reservation
station queue that are more architecturally important are
chosen to be modelled in more detail, while others such
as the integer multiplier are treated as black boxes. These
approximations allow for greater configurability, while also
allowing the simulator to run and produce results quicker
than a cycle-accurate simulator. These two advantages of
cycle-approximate modelling are especially important for a
simulator targeted at teaching computer architecture as the
actual cycle level details are less important when considering
the architectural level trade-offs within microprocessor design
and a faster simulation runtime allows for more rapid iteration
and experimentation with different microarchitecture designs
and parameters.

The simulator’s architecture is based on the SimpleScalar
simulation model for PISA and Alpha, with modifications to
match the RISC-V ISA and simplifications are made where
possible. This approach was chosen as designing an entirely
new simulation model without an existing processor to use as
reference would exceed the amount of time allocated for this
project and go beyond the project’s scope. Previous work has
shown that SimpleScalar is accurate to a high enough degree
for use within educational settings.

The following sections detail the architecture of the latency
simulator, the execution stages and their respective parameters,
and the other customisable components within the simulator.

A. Architecture

For latency simulation, the functional simulator was ex-
tended to add the various structures that model the individual
components contained within a modern microprocessor needed
for both in-order and out-of-order execution with dynamic
instruction issue and execution in a cycle-approxiate manner.
It inherits some of the same capabilities of the functional
simulator such as exception handling, privilege levels, and
memory management, and focuses on extending the detail of
instruction execution simulation.

It uses a 5-stage fixed pipeline that is controlled by calling
multiple functions in each simulated cycle, moving instruc-
tions and data through the different pipeline stages to fetch,
dispatch, issue, write-back and commit instructions.

The additional components within the latency simulator are
shown in Figure 2. Each rounded green rectangle within the di-
agram represents a processor function that moves instructions
through a certain pipeline stage. The blue hexagonal shapes
are data structures used to hold information moving between
stages during execution. These data structures may not exist in
an actual RTL implementation of a processor, but are required
for the simulator to track the simulated state. The yellow
rectangles represent the different structures that are required to



Fig. 2. Cycle Approximate Latency Simulator Architecture

model a processor that can dynamically schedule instructions
on the fly with dependency analysis. The orange rectangles
represent the components that are not directly related to the
processor execution model, but would typically exist in an
implementation. They include but are not limited to the branch
predictor, caches and a functional execution pool.

B. Execution Stages
1) Instruction Fetch: Each time the fetch stage function is

called, it repeatedly obtains instructions based on the predicted
program counter given by the branch predictor and places
the instructions within the Fetch Dispatch Queue. This
continues until the Fetch-Dispatch Queue is full or the fetch
pipeline width is reached or there is an I-cache miss. Both
the fetch pipeline width (fetch_width) and queue size
(fetch_queue_size) can be set by the user. An I-cache
miss results in the fetch stage stalling.

2) Instruction Dispatch: This stage obtains instructions
from the Fetch Dispatch Queue in program order, functionally
executes the instruction so that simulation can focus on
latency modelling, creates a Reservation Station and places
the instructions in either the Load Store Queue (LSQ) or
the Reservation Station Queue (RSQ). The LSQ and RSQ
holds all the instructions that are currently in-flight within
the processor, together with each instruction’s output and
input dependencies. Parameters such as issue_inorder,
rsq_size, lsq_size determine how many instructions can
be dispatched in a single cycle. If an instruction has no out-
standing unresolved dependencies, it can also be sent directly
to the Execution Ready Queue which holds references to all
reservation stations in-flight with satisfied input dependencies.

3) Instruction Issue: This stage takes instructions from the
Execution Ready Queue and attempts to get functional units

to execute each instruction. If a functional unit is available,
it is set to busy and a event is set to complete in the future
and inserted into the Event Queue for the writeback function
to handle. The Event Queue is a priority queue that contains
references to in-flight Reservation Stations and when they
complete using a functional unit, ordered by completion time.
Otherwise, the instruction is reinserted into the Execution
Ready Queue to retry instruction issue on the next cycle.
The functional execution pool configuration (# of functional
units, unit issue latency etc.) and the issue_width control
how many instructions can be processed.

4) Instruction Write Back: The write-back stage takes the
pre-scheduled events from the functional units recorded on
the Event Queue that happen in the current cycle or previous
cycles. For each event, if it indicates a mis-predicted branch
being resolved, the entries within the LSQ and RSQ after the
instruction are squashed, incurring the branch misprediction
penalty. Additionally, for each event that has output depen-
dencies, the register creator table is updated to remove the
output dependency, and each dependent instruction that was
dispatched after the current instruction is informed that one of
their input dependencies has been satisfied. If all inputs are
ready, they are sent to the Execution Ready Queue.

5) Instruction Commit: In the final stage, the RSQ is
iterated over from oldest to newest with the LSQ and each
completed entry is committed in program execution order
and removed. Stores are assigned to a memory port if there
is one available for use. As many entries are committed
until commit_width limit is hit, or an incomplete instruc-
tion is found. The factors that affect this stage include the
commit_width, the functional unit configuration.



C. Components

1) Branch Prediction: Three types of branch predictors are
implemented for simulation: perfect prediction, always taken
and always not taken. Perfect prediction is implemented by
correcting the prediction address after obtaining the correct
branch address in the functional execution of the branch
instruction during the dispatch stage. The two static predictors
are implemented as proofs of concept that additional more
complex branch predictors can be implemented, including
dynamic branch predictors.

2) Functional Unit Pool: The functional unit pool allows
flexible processor configurations to target a specific instruction
mix. For example, a program that has a high percentage of
division instructions can add more integer division units to
reduce stalls caused by a lack of available resources to execute
the division and increase IPC. The pool is modelled as a table
of functional units. Each functional unit is treated as a black
box in terms of implementation, where only the issue and
operation latency of each unit can be customised to either
model a fully-pipelined or partially pipelined or un-pipelined
unit implementation.

3) Register Creator Table: The register creator table keeps
track of which architectural registers are created by which
instruction. Each entry within the create table is either null,
indicating that there is no in-flight instruction that writes
to the register exists, or contains a reference to an in-flight
reservation station. When an instruction that uses a non-null
create table entry is dispatched, a reference to the dependent
output instruction is added to the creator, so that on write-back
the dependent can be updated.

4) Speculative Registers, Memory and Register Creator
Table: The latency simulator can simulate the effect of a mis-
prediction on performance, but it can also check if a prediction
is correct. Therefore, to simplify speculative tracking, a set of
registers, memory and register creator table can be added so
that executing a mis-predicted branch does not wrongly affect
the architectural state. For registers and the register create
table, a copy is maintained with a valid bitmap to determine
if the architectural registers should be read from or from the
speculative registers. For memory, a hashmap is used to keep
track of changes to memory that happen on a mis-predicted
path, with adjusted read and write functions to match.

D. Evaluation

The latency simulator also passed every individual instruc-
tion test. Sweeping parameters also showed the expected per-
formance improvements and degradation across the different
available statistics. Table II shows that as expected, when com-
pared to the functional simulator, simulation speed decreases
by 3.5x, and the memory usage jumps up by a order of 3.
However, the simulator remains faster than SimpleScalar’s
‘sim-outorder’ which with a similar configuration executes
at 0.2 MIPS. As this simulator has not been optimised, it
is possible that spending further time on optimisation would
allow the simulation speed to increase further, and have a
reduced memory footprint.

TABLE II
LATENCY SIMULATOR SUMMARY

Supported ISA RV64-IM
Privilege Levels Supported M only

Syscall Support N
Exception Handling N

Lines of Code 3K
Binary Size 1.5MB

MIPS1 ∼ 16
CPI Config Dependent

Memory Usage1 600MB
1 as tested with fib(32) on a 4-wide OoO pipeline

V. FUTURE WORK

While developing Riscalar and undertaking the literature
review, three main areas of improvement were noted for future
development.

1) User Experience: While a graphical user interface is
available for Riscalar, built using a Flutter front-end, the
experience remains crude and unpolished. The importance
of graphical user interfaces for simulation tools was noted
previously, which is why the CLI libraries have been built with
GUI support in mind, but further time is needed to develop a
first-class user experience.

2) Simulation Capabilities: Currently, the simulator only
supports the RV64IM instruction set. Adding other RISC-V
extensions such as the floating point extension and being able
to configure which extensions are supported by the simulator
would increase the relevance of the tool. Adding generalised
estimates for power consumption and area would also make
the tool more useful as these are other constraints that are
emphasised when designing microprocessors. Implementing
system call emulation for Riscalar would also reduce the
compiler restrictions needed now such as nostdlib.

3) Optimisation + Multiplatform: As mentioned in the
previous section, the latency simulator has not been analysed
for optimisation and has a significant memory footprint. With
optimisation, it may be possible to create a version of the
latency simulator that runs within the web browser using
WebAssembly, allowing more people to access and use it.

VI. CONCLUSION

This work has presented Riscalar, a highly parameterisable
computer architecture simulator for the RISC-V ISA. Through
the description of its design and implementation, it can be
observed that it may not necessarily be the most true-to-life
simulation tool, but its targeting of the RISC-V ISA and the
intuitiveness that it provides around system-level computer
architecture design make it a valuable resource for teaching.
The flexible nature allowing thousands of system parameter
combinations is sure to help students understand the trade-
offs that computer architects face in industry. It is hoped
that through further development and extension, Riscalar can
improve to become a better, more engaging tool for computer
engineering undergraduates and the wider education and sci-
entific community alike.



REFERENCES

[1] A. Dunworth and V. Upatising, “Umac: A simulated mi-
croprogrammable teaching aid,” ACM SIGCSE Bulletin,
vol. 21, no. 3, pp. 39–43, 1989.

[2] D. Foley, “Microcode simulation in the computer archi-
tecture course,” ACM SIGCSE Bulletin, vol. 24, no. 3,
pp. 57–59, 1992.

[3] S. D. Bergmann, “Simulating and compiling a hy-
pothetical microprogrammed architecture with projects
for computer architecture and compiler design,” ACM
SIGCSE Bulletin, vol. 25, no. 2, pp. 38–42, 1993.

[4] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A
framework for architectural-level power analysis and
optimizations,” ACM SIGARCH Computer Architecture
News, vol. 28, no. 2, pp. 83–94, 2000.

[5] C. T. Weaver, K. C. Barr, E. D. Marsman, D. Ernst,
and T. M. Austin, “Performance analysis using pipeline
visualization.,” in ISPASS, 2001, pp. 18–21.

[6] T. Austin, E. Larson, and D. Ernst, “Simplescalar: An
infrastructure for computer system modeling,” Com-
puter, vol. 35, no. 2, pp. 59–67, 2002.

[7] D. Burger, T. M. Austin, and S. W. Keckler, “Re-
cent extensions to the simplescalar tool suite,” ACM
SIGMETRICS Performance Evaluation Review, vol. 31,
no. 4, pp. 4–7, 2004.

[8] S. Narayanasamy, C. Pereira, H. Patil, R. Cohn, and B.
Calder, “Automatic logging of operating system effects
to guide application-level architecture simulation,” in
Proceedings of the joint international conference on
Measurement and modeling of computer systems, 2006,
pp. 216–227.

[9] A. Beg and W. Ibrahim, “An online tool for teaching
design trade-offs in computer architecture,” in Proc.
International Conference on Engineering Education,
Citeseer, 2007, pp. 3–7.

[10] B. Nikolic, Z. Radivojevic, J. Djordjevic, and V. Miluti-
novic, “A survey and evaluation of simulators suitable
for teaching courses in computer architecture and or-
ganization,” IEEE Transactions on Education, vol. 52,
no. 4, pp. 449–458, 2009.

[11] N. Binkert, B. Beckmann, G. Black, et al., “The
gem5 simulator,” ACM SIGARCH computer architec-
ture news, vol. 39, no. 2, pp. 1–7, 2011.

[12] F. Sanchez, D. Megas, and J. Prieto Blazquez, “Simr: A
simulator for learning computer architecture,” Interna-
tional Journal of Engineering Education, vol. 27, no. 2,
p. 238, 2011.

[13] R. Hasan and S. Mahmood, “Survey and evaluation of
simulators suitable for teaching for computer architec-
ture and organization supporting undergraduate students
at sir syed university of engineering & technology,” in
Proceedings of 2012 UKACC International Conference
on Control, IEEE, 2012, pp. 1043–1045.

[14] P. Jamieson, “Does badge-based learning buck the
grading curve? an educational experiment in computer

architecture,” in Proceedings of the International Con-
ference on Frontiers in Education: Computer Science
and Computer Engineering (FECS), The Steering Com-
mittee of The World Congress in Computer Science,
Computer . . ., 2014, p. 1.

[15] P. Prasad, A. Alsadoon, A. Beg, and A. Chan, “Us-
ing simulators for teaching computer organization and
architecture,” Computer Applications in Engineering
Education, vol. 24, no. 2, pp. 215–224, 2016.

[16] R. Agrawal, S. Bandara, A. Ehret, M. Isakov, M. Mark,
and M. A. Kinsy, “The brisc-v platform: A practical
teaching approach for computer architecture,” in Pro-
ceedings of the Workshop on Computer Architecture
Education, 2019, pp. 1–8.

[17] A. Akram and L. Sawalha, “A survey of computer
architecture simulation techniques and tools,” IEEE
Access, vol. 7, pp. 78 120–78 145, 2019.

[18] R. Höller, D. Haselberger, D. Ballek, P. Rössler, M.
Krapfenbauer, and M. Linauer, “Open-source risc-v
processor ip cores for fpgas—overview and evaluation,”
in 2019 8th Mediterranean Conference on Embedded
Computing (MECO), IEEE, 2019, pp. 1–6.

[19] A. Shilov, Western digital rolls-out two new swerv
risc-v cores for microcontrollers, Dec. 2019. [Online].
Available: https : / /www.anandtech .com/show/15231/
western-digital-rollsout-two-new-swerv-riscv-cores.

[20] A. Waterman, K. Asanovic, J. Hauser, S. Inc., and
C. D. E. D. U. of Calfornia Berkeley, “The RISC-V
Instruction Set Manual Volume ii: Unprivileged ISA
Version 20191213,” Tech. Rep., Dec. 2019.

[21] A. Waterman, K. Asanovic, S. Inc., and C. D. E. D. U.
of Calfornia Berkeley, “The RISC-V Instruction
Set Manual Volume i: Unprivileged ISA Version
20191213,” Tech. Rep., Dec. 2019.

[22] E. Systems, Introducing esp32-c3, Nov. 2020. [Online].
Available: https://www.espressif.com/en/news/ESP32
C3.

[23] D. Kleidermacher, J. Seed, B. Barbello, and S. Somogyi,
Pixel 6: Setting a new standard for mobile security, Oct.
2021. [Online]. Available: https://security.googleblog.
com/2021/10/pixel-6-setting-new-standard-for-mobile.
html.

[24] M. B. Petersen, “Ripes: A visual computer architecture
simulator,” in 2021 ACM/IEEE Workshop on Computer
Architecture Education (WCAE), IEEE, 2021, pp. 1–8.

[25] G. Mariotti and R. Giorgi, “Webrisc-v: A 32/64-bit
risc-v pipeline simulation tool,” SoftwareX, vol. 18,
p. 101 105, 2022.

https://www.anandtech.com/show/15231/western-digital-rollsout-two-new-swerv-riscv-cores
https://www.anandtech.com/show/15231/western-digital-rollsout-two-new-swerv-riscv-cores
https://www.espressif.com/en/news/ESP32_C3
https://www.espressif.com/en/news/ESP32_C3
https://security.googleblog.com/2021/10/pixel-6-setting-new-standard-for-mobile.html
https://security.googleblog.com/2021/10/pixel-6-setting-new-standard-for-mobile.html
https://security.googleblog.com/2021/10/pixel-6-setting-new-standard-for-mobile.html

	Introduction
	Literature Review
	Simulators for Education
	General Computer Architecture Simulation
	Cycle-Approximate Simulator
	Application Level Simulator
	Execution Based Simulator


	Functional Simulation
	Architecture
	Memory
	Architectural Registers
	Instruction Decode and Execution
	Exception Handling
	Privilege Mode
	Functional Simulator Evaluation

	Latency Simulation
	Architecture
	Execution Stages
	Instruction Fetch
	Instruction Dispatch
	Instruction Issue
	Instruction Write Back
	Instruction Commit

	Components
	Branch Prediction
	Functional Unit Pool
	Register Creator Table
	Speculative Registers, Memory and Register Creator Table

	Evaluation

	Future Work
	User Experience
	Simulation Capabilities
	Optimisation + Multiplatform


	Conclusion

